All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
A new biometric approach and efficient system for automatic detection and analysis of digital retinal images
Computer Research and Modeling, 2010, v. 2, no. 2, pp. 189-197Views (last year): 3.The program for automatic revealing of threshold values for characterizing physiological state of vessels and detection of early stages of retina pathology is offered. The algorithm is based on checking character of crossing sites of vessel images with the "mask" consisting of concentric circumferences (the first circumference is imposed directly on the sclera capsules of an optic nerve disk). The new method allows revealing of a network of blood vessels and flanking zones and detection of initial stage of pathological changes in a retina by digital images.
-
Computer aided analysis of medical image recognition for example of scintigraphy
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 541-548Views (last year): 3. Citations: 3 (RSCI).The practical application of nuclear medicine demonstrates the continued information deficiency of the algorithms and programs that provide visualization and analysis of medical images. The aim of the study was to determine the principles of optimizing the processing of planar osteostsintigraphy on the basis of сomputer aided diagnosis (CAD) for analysis of texture descriptions of images of metastatic zones on planar scintigrams of skeleton. A computer-aided diagnosis system for analysis of skeletal metastases based on planar scintigraphy data has been developed. This system includes skeleton image segmentation, calculation of textural, histogram and morphometrical parameters and the creation of a training set. For study of metastatic images’ textural characteristics on planar scintigrams of skeleton was developed the computer program of automatic analysis of skeletal metastases is used from data of planar scintigraphy. Also expert evaluation was used to distinguishing ‘pathological’ (metastatic) from ‘physiological’ (non-metastatic) radiopharmaceutical hyperfixation zones in which Haralick’s textural features were determined: autocorrelation, contrast, ‘forth moment’ and heterogeneity. This program was established on the principles of сomputer aided diagnosis researches planar scintigrams of skeletal patients with metastatic breast cancer hearths hyperfixation of radiopharmaceuticals were identified. Calculated parameters were made such as brightness, smoothness, the third moment of brightness, brightness uniformity, entropy brightness. It has been established that in most areas of the skeleton of histogram values of parameters in pathologic hyperfixation of radiopharmaceuticals predominate over the same values in the physiological. Most often pathological hyperfixation of radiopharmaceuticals as the front and rear fixed scintigramms prevalence of brightness and smoothness of the image brightness in comparison with those of the physiological hyperfixation of radiopharmaceuticals. Separate figures histogram analysis can be used in specifying the diagnosis of metastases in the mathematical modeling and interpretation bone scintigraphy. Separate figures histogram analysis can be used in specifying the diagnosis of metastases in the mathematical modeling and interpretation bone scintigraphy.
-
Classifier size optimisation in segmentation of three-dimensional point images of wood vegetation
Computer Research and Modeling, 2025, v. 17, no. 4, pp. 665-675The advent of laser scanning technologies has revolutionized forestry. Their use made it possible to switch from studying woodlands using manual measurements to computer analysis of stereo point images called point clouds.
Automatic calculation of some tree parameters (such as trunk diameter) using a point cloud requires the removal of foliage points. To perform this operation, a preliminary segmentation of the stereo image into the “foliage” and “trunk” classes is required. The solution to this problem often involves the use of machine learning methods.
One of the most popular classifiers used for segmentation of stereo images of trees is a random forest. This classifier is quite demanding on the amount of memory. At the same time, the size of the machine learning model can be critical if it needs to be sent by wire, which is required, for example, when performing distributed learning. In this paper, the goal is to find a classifier that would be less demanding in terms of memory, but at the same time would have comparable segmentation accuracy. The search is performed among classifiers such as logistic regression, naive Bayes classifier, and decision tree. In addition, a method for segmentation refinement performed by a decision tree using logistic regression is being investigated.
The experiments were conducted on data from the collection of the University of Heidelberg. The collection contains hand-marked stereo images of trees of various species, both coniferous and deciduous, typical of the forests of Central Europe.
It has been shown that classification using a decision tree, adjusted using logistic regression, is able to produce a result that is only slightly inferior to the result of a random forest in accuracy, while spending less time and RAM. The difference in balanced accuracy is no more than one percent on all the clouds considered, while the total size and inference time of the decision tree and logistic regression classifiers is an order of magnitude smaller than of the random forest classifier.
-
An effective segmentation approach for liver computed tomography scans using fuzzy exponential entropy
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 195-202Accurate segmentation of liver plays important in contouring during diagnosis and the planning of treatment. Imaging technology analysis and processing are wide usage in medical diagnostics, and therapeutic applications. Liver segmentation referring to the process of automatic or semi-automatic detection of liver image boundaries. A major difficulty in segmentation of liver image is the high variability as; the human anatomy itself shows major variation modes. In this paper, a proposed approach for computed tomography (CT) liver segmentation is presented by combining exponential entropy and fuzzy c-partition. Entropy concept has been utilized in various applications in imaging computing domain. Threshold techniques based on entropy have attracted a considerable attention over the last years in image analysis and processing literatures and it is among the most powerful techniques in image segmentation. In the proposed approach, the computed tomography (CT) of liver is transformed into fuzzy domain and fuzzy entropies are defined for liver image object and background. In threshold selection procedure, the proposed approach considers not only the information of liver image background and object, but also interactions between them as the selection of threshold is done by find a proper parameter combination of membership function such that the total fuzzy exponential entropy is maximized. Differential Evolution (DE) algorithm is utilizing to optimize the exponential entropy measure to obtain image thresholds. Experimental results in different CT livers scan are done and the results demonstrate the efficient of the proposed approach. Based on the visual clarity of segmented images with varied threshold values using the proposed approach, it was observed that liver segmented image visual quality is better with the results higher level of threshold.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




