Результаты поиска по 'benchmark':
Найдено статей: 13
  1. Strygin N.A., Kudasov N.D.
    Fast and accurate x86 disassembly using a graph convolutional network model
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1779-1792

    Disassembly of stripped x86 binaries is an important yet non-trivial task. Disassembly is difficult to perform correctly without debug information, especially on x86 architecture, which has variablesized instructions interleaved with data. Moreover, the presence of indirect jumps in binary code adds another layer of complexity. Indirect jumps impede the ability of recursive traversal, a common disassembly technique, to successfully identify all instructions within the code. Consequently, disassembling such code becomes even more intricate and demanding, further highlighting the challenges faced in this field. Many tools, including commercial ones such as IDA Pro, struggle with accurate x86 disassembly. As such, there has been some interest in developing a better solution using machine learning (ML) techniques. ML can potentially capture underlying compiler-independent patterns inherent for the compiler-generated assembly. Researchers in this area have shown that it is possible for ML approaches to outperform the classical tools. They also can be less timeconsuming to develop compared to manual heuristics, shifting most of the burden onto collecting a big representative dataset of executables with debug information. Following this line of work, we propose an improvement of an existing RGCN-based architecture, which builds control and flow graph on superset disassembly. The enhancement comes from augmenting the graph with data flow information. In particular, in the embedding we add Jump Control Flow and Register Dependency edges, inspired by Probabilistic Disassembly. We also create an open-source x86 instruction identification dataset, based on a combination of ByteWeight dataset and a selection open-source Debian packages. Compared to IDA Pro, a state of the art commercial tool, our approach yields better accuracy, while maintaining great performance on our benchmarks. It also fares well against existing machine learning approaches such as DeepDi.

  2. Reed R.G., Cox M.A., Wrigley T., Mellado B.
    A CPU benchmarking characterization of ARM based processors
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 581-586

    Big science projects are producing data at ever increases rates. Typical techniques involve storing the data to disk, after minor filtering, and then processing it in large computer farms. Data production has reached a point where on-line processing is required in order to filter the data down to manageable sizes. A potential solution involves using low-cost, low-power ARM processors in large arrays to provide massive parallelisation for data stream computing (DSC). The main advantage in using System on Chips (SoCs) is inherent in its design philosophy. SoCs are primarily used in mobile devices and hence consume less power while maintaining relatively good performance. A benchmarking characterisation of three different models of ARM processors will be presented.

    Views (last year): 1.
  3. Wrigley T., Reed R.G., Mellado B.
    Memory benchmarking characterisation of ARM-based SoCs
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 607-613

    Computational intensity is traditionally the focus of large-scale computing system designs, generally leaving such designs ill-equipped to efficiently handle throughput-oriented workloads. In addition, cost and energy consumption considerations for large-scale computing systems in general remain a source of concern. A potential solution involves using low-cost, low-power ARM processors in large arrays in a manner which provides massive parallelisation and high rates of data throughput (relative to existing large-scale computing designs). Giving greater priority to both throughput-rate and cost considerations increases the relevance of primary memory performance and design optimisations to overall system performance. Using several primary memory performance benchmarks to evaluate various aspects of RAM and cache performance, we provide characterisations of the performances of four different models of ARM-based system-on-chip, namely the Cortex-A9, Cortex- A7, Cortex-A15 r3p2 and Cortex-A15 r3p3. We then discuss the relevance of these results to high volume computing and the potential for ARM processors.

Pages: previous

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"