All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Analysis of predictive properties of ground tremor using Huang decomposition
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 939-958A method is proposed for analyzing the tremor of the earth’s surface, measured by means of space geodesy, in order to highlight the prognostic effects of seismicity activation. The method is illustrated by the example of a joint analysis of a set of synchronous time series of daily vertical displacements of the earth’s surface on the Japanese Islands for the time interval 2009–2023. The analysis is based on dividing the source data (1047 time series) into blocks (clusters of stations) and sequentially applying the principal component method. The station network is divided into clusters using the K-means method from the maximum pseudo-F-statistics criterion, and for Japan the optimal number of clusters was chosen to be 15. The Huang decomposition method into a sequence of independent empirical oscillation modes (EMD — Empirical Mode Decomposition) is applied to the time series of principal components from station blocks. To provide the stability of estimates of the waveforms of the EMD decomposition, averaging of 1000 independent additive realizations of white noise of limited amplitude was performed. Using the Cholesky decomposition of the covariance matrix of the waveforms of the first three EMD components in a sliding time window, indicators of abnormal tremor behavior were determined. By calculating the correlation function between the average indicators of anomalous behavior and the released seismic energy in the vicinity of the Japanese Islands, it was established that bursts in the measure of anomalous tremor behavior precede emissions of seismic energy. The purpose of the article is to clarify common hypotheses that movements of the earth’s crust recorded by space geodesy may contain predictive information. That displacements recorded by geodetic methods respond to the effects of earthquakes is widely known and has been demonstrated many times. But isolating geodetic effects that predict seismic events is much more challenging. In our paper, we propose one method for detecting predictive effects in space geodesy data.
-
The use of cluster analysis methods for the study of a set of feasible solutions of the phase problem in biological crystallography
Computer Research and Modeling, 2010, v. 2, no. 1, pp. 91-101Views (last year): 2.X-ray diffraction experiment allows determining of magnitudes of complex coefficients in the decomposition of the studied electron density distribution into Fourier series. The determination of the lost in the experiment phase values poses the central problem of the method, namely the phase problem. Some methods for solving of the phase problem result in a set of feasible solutions. Cluster analysis method may be used to investigate the composition of this set and to extract one or several typical solutions. An essential feature of the approach is the estimation of the closeness of two solutions by the map correlation between two aligned Fourier syntheses calculated with the use of phase sets under comparison. An interactive computer program ClanGR was designed to perform this analysis.
-
Credit risk assessment on the basis of multidimensional analysis
Computer Research and Modeling, 2013, v. 5, no. 5, pp. 893-901Views (last year): 7. Citations: 19 (RSCI).The article is devoted to description the author's method of multidimensional analysis for generate an predictive assessment of organizations’ credit risk, based on the credit history information, which taking into account value and period of credit. An example of credit risk assessment is given.
-
Methodological approach to modeling and forecasting the impact of the spatial heterogeneity of the COVID-19 spread on the economic development of Russian regions
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 629-648The article deals with the development of a methodological approach to forecasting and modeling the socioeconomic consequences of viral epidemics in conditions of heterogeneous economic development of territorial systems. The relevance of the research stems from the need for rapid mechanisms of public management and stabilization of adverse epidemiological situation, taking into account the spatial heterogeneity of the spread of COVID-19, accompanied by a concentration of infection in large metropolitan areas and territories with high economic activity. The aim of the work is to substantiate a methodology to assess the spatial heterogeneity of the spread of coronavirus infection, find poles of its growth, emerging spatial clusters and zones of their influence with the assessment of inter-territorial relationships, as well as simulate the effects of worsening epidemiological situation on the dynamics of economic development of regional systems. The peculiarity of the developed approach is the spatial clustering of regional systems by the level of COVID-19 incidence, conducted using global and local spatial autocorrelation indices, various spatial weight matrices, and L.Anselin mutual influence matrix based on the statistical information of the Russian Federal State Statistics Service. The study revealed a spatial cluster characterized by high levels of infection with COVID-19 with a strong zone of influence and stable interregional relationships with surrounding regions, as well as formed growth poles which are potential poles of further spread of coronavirus infection. Regression analysis using panel data not only confirmed the impact of COVID-19 incidence on the average number of employees in enterprises, the level of average monthly nominal wages, but also allowed to form a model for scenario prediction of the consequences of the spread of coronavirus infection. The results of this study can be used to form mechanisms to contain the coronavirus infection and stabilize socio-economic at macroeconomic and regional level and restore the economy of territorial systems, depending on the depth of the spread of infection and the level of economic damage caused.
-
Deep learning analysis of intracranial EEG for recognizing drug effects and mechanisms of action
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 755-772Predicting novel drug properties is fundamental to polypharmacology, repositioning, and the study of biologically active substances during the preclinical phase. The use of machine learning, including deep learning methods, for the identification of drug – target interactions has gained increasing popularity in recent years.
The objective of this study was to develop a method for recognizing psychotropic effects and drug mechanisms of action (drug – target interactions) based on an analysis of the bioelectrical activity of the brain using artificial intelligence technologies.
Intracranial electroencephalographic (EEG) signals from rats were recorded (4 channels at a sampling frequency of 500 Hz) after the administration of psychotropic drugs (gabapentin, diazepam, carbamazepine, pregabalin, eslicarbazepine, phenazepam, arecoline, pentylenetetrazole, picrotoxin, pilocarpine, chloral hydrate). The signals were divided into 2-second epochs, then converted into $2000\times 4$ images and input into an autoencoder. The output of the bottleneck layer was subjected to classification and clustering using t-SNE, and then the distances between resulting clusters were calculated. As an alternative, an approach based on feature extraction with dimensionality reduction using principal component analysis and kernel support vector machine (kSVM) classification was used. Models were validated using 5-fold cross-validation.
The classification accuracy obtained for 11 drugs during cross-validation was $0.580 \pm 0.021$, which is significantly higher than the accuracy of the random classifier $(0.091 \pm 0.045, p < 0.0001)$ and the kSVM $(0.441 \pm 0.035, p < 0.05)$. t-SNE maps were generated from the bottleneck parameters of intracranial EEG signals. The relative proximity of the signal clusters in the parametric space was assessed.
The present study introduces an original method for biopotential-mediated prediction of effects and mechanism of action (drug – target interaction). This method employs convolutional neural networks in conjunction with a modified selective parameter reduction algorithm. Post-treatment EEGs were compressed into a unified parameter space. Using a neural network classifier and clustering, we were able to recognize the patterns of neuronal response to the administration of various psychotropic drugs.
-
Running applications on a hybrid cluster
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 475-483Views (last year): 4.A hybrid cluster implies the use of computational devices with radically different architectures. Usually, these are conventional CPU architecture (e.g. x86_64) and GPU architecture (e. g. NVIDIA CUDA). Creating and exploiting such a cluster requires some experience: in order to harness all computational power of the described system and get substantial speedup for computational tasks many factors should be taken into account. These factors consist of hardware characteristics (e.g. network infrastructure, a type of data storage, GPU architecture) as well as software stack (e.g. MPI implementation, GPGPU libraries). So, in order to run scientific applications GPU capabilities, software features, task size and other factors should be considered.
This report discusses opportunities and problems of hybrid computations. Some statistics from tests programs and applications runs will be demonstrated. The main focus of interest is open source applications (e. g. OpenFOAM) that support GPGPU (with some parts rewritten to use GPGPU directly or by replacing libraries).
There are several approaches to organize heterogeneous computations for different GPU architectures out of which CUDA library and OpenCL framework are compared. CUDA library is becoming quite typical for hybrid systems with NVIDIA cards, but OpenCL offers portability opportunities which can be a determinant factor when choosing framework for development. We also put emphasis on multi-GPU systems that are often used to build hybrid clusters. Calculations were performed on a hybrid cluster of SPbU computing center.
-
Simulation of the gas condensate reservoir depletion
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1081-1095One of problems in developing the gas condensate fields lies on the fact that the condensed hydrocarbons in the gas-bearing layer can get stuck in the pores of the formation and hence cannot be extracted. In this regard, research is underway to increase the recoverability of hydrocarbons in such fields. This research includes a wide range of studies on mathematical simulations of the passage of gas condensate mixtures through a porous medium under various conditions.
In the present work, within the classical approach based on the Darcy law and the law of continuity of flows, we formulate an initial-boundary value problem for a system of nonlinear differential equations that describes a depletion of a multicomponent gas-condensate mixture in porous reservoir. A computational scheme is developed on the basis of the finite-difference approximation and the fourth order Runge .Kutta method. The scheme can be used for simulations both in the spatially one-dimensional case, corresponding to the conditions of the laboratory experiment, and in the two-dimensional case, when it comes to modeling a flat gas-bearing formation with circular symmetry.
The computer implementation is based on the combination of C++ and Maple tools, using the MPI parallel programming technique to speed up the calculations. The calculations were performed on the HybriLIT cluster of the Multifunctional Information and Computing Complex of the Laboratory of Information Technologies of the Joint Institute for Nuclear Research.
Numerical results are compared with the experimental data on the pressure dependence of output of a ninecomponent hydrocarbon mixture obtained at a laboratory facility (VNIIGAZ, Ukhta). The calculations were performed for two types of porous filler in the laboratory model of the formation: terrigenous filler at 25 .„R and carbonate one at 60 .„R. It is shown that the approach developed ensures an agreement of the numerical results with experimental data. By fitting of numerical results to experimental data on the depletion of the laboratory reservoir, we obtained the values of the parameters that determine the inter-phase transition coefficient for the simulated system. Using the same parameters, a computer simulation of the depletion of a thin gas-bearing layer in the circular symmetry approximation was carried out.
-
The agent model of intercultural interactions: the emergence of cultural uncertainties
Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1143-1162The article describes a simulation agent-based model of intercultural interactions in a country whose population belongs to different cultures. It is believed that the space of cultures can be represented as a Hilbert space, in which certain subspaces correspond to different cultures. In the model, the concept of culture is understood as a structured subspace of the Hilbert space. This makes it possible to describe the state of agents by a vector in a Hilbert space. It is believed that each agent is described by belonging to a certain «culture». The number of agents belonging to certain cultures is determined by demographic processes that correspond to these cultures, the depth and integrity of the educational process, as well as the intensity of intercultural contacts. Interaction between agents occurs within clusters, into which, according to certain criteria, the entire set of agents is divided. When agents interact according to a certain algorithm, the length and angle that characterize the state of the agent change. In the process of imitation, depending on the number of agents belonging to different cultures, the intensity of demographic and educational processes, as well as the intensity of intercultural contacts, aggregates of agents (clusters) are formed, the agents of which belong to different cultures. Such intercultural clusters do not entirely belong to any of the cultures initially considered in the model. Such intercultural clusters create uncertainties in cultural dynamics. The paper presents the results of simulation experiments that illustrate the influence of demographic and educational processes on the dynamics of intercultural clusters. The issues of the development of the proposed approach to the study (discussion) of the transitional states of the development of cultures are discussed.
-
The problem of choosing solutions in the classical format of the description of a molecular system
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1573-1600The numerical methods developed by the author recently for calculating the molecular system based on the direct solution of the Schrodinger equation by the Monte Carlo method have shown a huge uncertainty in the choice of solutions. On the one hand, it turned out to be possible to build many new solutions; on the other hand, the problem of their connection with reality has become sharply aggravated. In ab initio quantum mechanical calculations, the problem of choosing solutions is not so acute after the transition to the classical format of describing a molecular system in terms of potential energy, the method of molecular dynamics, etc. In this paper, we investigate the problem of choosing solutions in the classical format of describing a molecular system without taking into account quantum mechanical prerequisites. As it turned out, the problem of choosing solutions in the classical format of describing a molecular system is reduced to a specific marking of the configuration space in the form of a set of stationary points and reconstruction of the corresponding potential energy function. In this formulation, the solution of the choice problem is reduced to two possible physical and mathematical problems: to find all its stationary points for a given potential energy function (the direct problem of the choice problem), to reconstruct the potential energy function for a given set of stationary points (the inverse problem of the choice problem). In this paper, using a computational experiment, the direct problem of the choice problem is discussed using the example of a description of a monoatomic cluster. The number and shape of the locally equilibrium (saddle) configurations of the binary potential are numerically estimated. An appropriate measure is introduced to distinguish configurations in space. The format of constructing the entire chain of multiparticle contributions to the potential energy function is proposed: binary, threeparticle, etc., multiparticle potential of maximum partiality. An infinite number of locally equilibrium (saddle) configurations for the maximum multiparticle potential is discussed and illustrated. A method of variation of the number of stationary points by combining multiparticle contributions to the potential energy function is proposed. The results of the work listed above are aimed at reducing the huge arbitrariness of the choice of the form of potential that is currently taking place. Reducing the arbitrariness of choice is expressed in the fact that the available knowledge about the set of a very specific set of stationary points is consistent with the corresponding form of the potential energy function.
-
Approaches to a social network groups clustering
Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1127-1139Views (last year): 8. Citations: 2 (RSCI).The research is devoted to the problem of the use of social networks as a tool of the illegal activity and as a source of information that could be dangerous to society. The article presents the structure of the multiagent system with which a social network groups could be clustered according to the criteria uniquely defines a group as a destructive. The agents’ of the system clustering algorithm is described.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




