All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Tasks and algorithms for optimal clustering of multidimensional objects by a variety of heterogeneous indicators and their applications in medicine
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 673-693The work is devoted to the description of the author’s formal statements of the clustering problem for a given number of clusters, algorithms for their solution, as well as the results of using this toolkit in medicine.
The solution of the formulated problems by exact algorithms of implementations of even relatively low dimensions before proving optimality is impossible in a finite time due to their belonging to the NP class.
In this regard, we have proposed a hybrid algorithm that combines the advantages of precise methods based on clustering in paired distances at the initial stage with the speed of methods for solving simplified problems of splitting by cluster centers at the final stage. In the development of this direction, a sequential hybrid clustering algorithm using random search in the paradigm of swarm intelligence has been developed. The article describes it and presents the results of calculations of applied clustering problems.
To determine the effectiveness of the developed tools for optimal clustering of multidimensional objects according to a variety of heterogeneous indicators, a number of computational experiments were performed using data sets including socio-demographic, clinical anamnestic, electroencephalographic and psychometric data on the cognitive status of patients of the cardiology clinic. An experimental proof of the effectiveness of using local search algorithms in the paradigm of swarm intelligence within the framework of a hybrid algorithm for solving optimal clustering problems has been obtained.
The results of the calculations indicate the actual resolution of the main problem of using the discrete optimization apparatus — limiting the available dimensions of task implementations. We have shown that this problem is eliminated while maintaining an acceptable proximity of the clustering results to the optimal ones. The applied significance of the obtained clustering results is also due to the fact that the developed optimal clustering toolkit is supplemented by an assessment of the stability of the formed clusters, which allows for known factors (the presence of stenosis or older age) to additionally identify those patients whose cognitive resources are insufficient to overcome the influence of surgical anesthesia, as a result of which there is a unidirectional effect of postoperative deterioration of complex visual-motor reaction, attention and memory. This effect indicates the possibility of differentiating the classification of patients using the proposed tools.
-
Methods for modeling composites reinforced with carbon nanotubes: review and perspectives
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1143-1162The study of the structural characteristics of composites and nanostructures is of fundamental importance in materials science. Theoretical and numerical modeling and simulation of the mechanical properties of nanostructures is the main tool that allows for complex studies that are difficult to conduct only experimentally. One example of nanostructures considered in this work are carbon nanotubes (CNTs), which have good thermal and electrical properties, as well as low density and high Young’s modulus, making them the most suitable reinforcement element for composites, for potential applications in aerospace, automotive, metallurgical and biomedical industries. In this review, we reviewed the modeling methods, mechanical properties, and applications of CNT-reinforced metal matrix composites. Some modeling methods applicable in the study of composites with polymer and metal matrices are also considered. Methods such as the gradient descent method, the Monte Carlo method, methods of molecular statics and molecular dynamics are considered. Molecular dynamics simulations have been shown to be excellent for creating various composite material systems and studying the properties of metal matrix composites reinforced with carbon nanomaterials under various conditions. This paper briefly presents the most commonly used potentials that describe the interactions of composite modeling systems. The correct choice of interaction potentials between parts of composites directly affects the description of the phenomenon being studied. The dependence of the mechanical properties of composites on the volume fraction of the diameter, orientation, and number of CNTs is detailed and discussed. It has been shown that the volume fraction of carbon nanotubes has a significant effect on the tensile strength and Young’s modulus. The CNT diameter has a greater impact on the tensile strength than on the elastic modulus. An example of works is also given in which the effect of CNT length on the mechanical properties of composites is studied. In conclusion, we offer perspectives on the direction of development of molecular dynamics modeling in relation to metal matrix composites reinforced with carbon nanomaterials.
-
Review of algorithmic solutions for deployment of neural networks on lite devices
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1601-1619In today’s technology-driven world, lite devices like Internet of Things (IoT) devices and microcontrollers (MCUs) are becoming increasingly common. These devices are more energyefficient and affordable, often with reduced features compared to the standard versions such as very limited memory and processing power for typical machine learning models. However, modern machine learning models can have millions of parameters, resulting in a large memory footprint. This complexity not only makes it difficult to deploy these large models on resource constrained devices but also increases the risk of latency and inefficiency in processing, which is crucial in some cases where real-time responses are required such as autonomous driving and medical diagnostics. In recent years, neural networks have seen significant advancements in model optimization techniques that help deployment and inference on these small devices. This narrative review offers a thorough examination of the progression and latest developments in neural network optimization, focusing on key areas such as quantization, pruning, knowledge distillation, and neural architecture search. It examines how these algorithmic solutions have progressed and how new approaches have improved upon the existing techniques making neural networks more efficient. This review is designed for machine learning researchers, practitioners, and engineers who may be unfamiliar with these methods but wish to explore the available techniques. It highlights ongoing research in optimizing networks for achieving better performance, lowering energy consumption, and enabling faster training times, all of which play an important role in the continued scalability of neural networks. Additionally, it identifies gaps in current research and provides a foundation for future studies, aiming to enhance the applicability and effectiveness of existing optimization strategies.
-
High-precision estimation of the spatial orientation of the video camera of the vision system of the mobile robotic complex
Computer Research and Modeling, 2025, v. 17, no. 1, pp. 93-107The efficiency of mobile robotic systems (MRS) that monitor the traffic situation, urban infrastructure, consequences of emergency situations, etc., directly depends on the quality of vision systems, which are the most important part of MRS. In turn, the accuracy of image processing in vision systems depends to a great extent on the accuracy of spatial orientation of the video camera placed on the MRS. However, when video cameras are placed on the MRS, the level of errors of their spatial orientation increases sharply, caused by wind and seismic vibrations, movement of the MRS over rough terrain, etc. In this connection, the paper considers a general solution to the problem of stochastic estimation of spatial orientation parameters of video cameras in conditions of both random mast vibrations and arbitrary character of MRS movement. Since the methods of solving this problem on the basis of satellite measurements at high intensity of natural and artificial radio interference (the methods of formation of which are constantly being improved) are not able to provide the required accuracy of the solution, the proposed approach is based on the use of autonomous means of measurement — inertial and non-inertial. But when using them, the problem of building and stochastic estimation of the general model of video camera motion arises, the complexity of which is determined by arbitrary motion of the video camera, random mast oscillations, measurement disturbances, etc. The problem of stochastic estimation of the general model of video camera motion arises. Due to the unsolved nature of this problem, the paper considers the synthesis of both the video camera motion model in the most general case and the stochastic estimation of its state parameters. The developed algorithm for joint estimation of the spatial orientation parameters of the video camera placed on the mast of the MRS is invariant to the nature of motion of the mast, the video camera, and the MRS itself, providing stability and the required accuracy of estimation under the most general assumptions about the nature of interference of the sensitive elements of the autonomous measuring complex used. The results of the numerical experiment allow us to conclude that the proposed approach can be practically applied to solve the problem of the current spatial orientation of MRS and video cameras placed on them using inexpensive autonomous measuring devices.
-
Research of possibility for man the parallel information handling in task series with increase complexity
Computer Research and Modeling, 2013, v. 5, no. 5, pp. 845-861Views (last year): 1. Citations: 4 (RSCI).We schedule the computer technology for present the engineer psychology tests which reveal probationer men which may hasten the logic task solution by simultaneous execution several standard logic operations. These tests based on the theory of two logic task kinds: in first kind the parallel logic is effectively, and in second kind it is not effectively. The realize experiment confirms the capability parallel logic for impotent part of people. The vital speedup execution of logic operations is very uncommon in simultaneous logic. The efficacy of methodic is confirmed.
-
Computer analysis of the bone regeneration strength in a model system of osteosynthesis by the Ilizarov fixator with static loads
Computer Research and Modeling, 2014, v. 6, no. 3, pp. 427-440Views (last year): 3.The adequate complexity three-dimensional finite element model of biomechanical system with space, shell and beam-type elements was built. The model includes the Ilizarov fixator and tibial bone’s simulator with the regenerating tissue at the fracture location. The proposed model allows us to specify the orthotropic elastic properties of tibial bone model in cortical and trabecular zones. It is also possible to change the basic geometrical and mechanical characteristics of biomechanical system, change the finite element mash density and define the different external loads, such as pressure on the bone and compression or distraction between the repositioned rings of Ilizarov device.
By using special APDL ANSYS program macros the mode of deformation was calculated in the fracture zone for various static loads on the simulator bone, for compression or distraction between the repositioned rings and for various mechanical properties during different stages of the bone regenerate formation (gelatinous, cartilaginous, trabecular and cortical bone remodeling). The obtained results allow us to estimate the permissible values of the external pressure on the bone and of the displacements of the Ilizarov fixator rings for different stages of the bone regeneration, based on the admittance criterion for the maximum of the stresses in the callus. The presented data can be used in a clinical condition for planning, realization and monitoring of the power modes for transosseous osteosynthesis with the external Ilizarov fixator.
-
Numerical simulation of ethylene combustion in supersonic air flow
Computer Research and Modeling, 2017, v. 9, no. 1, pp. 75-86Views (last year): 8. Citations: 3 (RSCI).In the present paper, we discuss the possibility of a simplified three-dimensional unsteady simulation of plasma-assisted combustion of gaseous fuel in a supersonic airflow. Simulation was performed by using FlowVision CFD software. Analysis of experimental geometry show that it has essentially 3D nature that conditioned by the discrete fuel injection into the flow as well as by the presence of the localized plasma filaments. Study proposes a variant of modeling geometry simplification based on symmetry of the aerodynamic duct and periodicity of the spatial inhomogeneities. Testing of modified FlowVision $k–\varepsilon$ turbulence model named «KEFV» was performed for supersonic flow conditions. Based on that detailed grid without wall functions was used the field of heat and near fuel injection area and surfaces remote from the key area was modeled with using of wall functions, that allowed us to significantly reduce the number of cells of the computational grid. Two steps significantly simplified a complex problem of the hydrocarbon fuel ignition by means of plasma generation. First, plasma formations were simulated by volumetric heat sources and secondly, fuel combustion is reduced to one brutto reaction. Calibration and parametric optimization of the fuel injection into the supersonic flow for IADT-50 JIHT RAS wind tunnel is made by means of simulation using FlowVision CFD software. Study demonstrates a rather good agreement between the experimental schlieren photo of the flow with fuel injection and synthetical one. Modeling of the flow with fuel injection and plasma generation for the facility T131 TSAGI combustion chamber geometry demonstrates a combustion mode for the set of experimental parameters. Study emphasizes the importance of the computational mesh adaptation and spatial resolution increasing for the volumetric heat sources that model electric discharge area. A reasonable qualitative agreement between experimental pressure distribution and modeling one confirms the possibility of limited application of such simplified modeling for the combustion in high-speed flow.
-
Synchronous components of financial time series
Computer Research and Modeling, 2017, v. 9, no. 4, pp. 639-655The article proposes a method of joint analysis of multidimensional financial time series based on the evaluation of the set of properties of stock quotes in a sliding time window and the subsequent averaging of property values for all analyzed companies. The main purpose of the analysis is to construct measures of joint behavior of time series reacting to the occurrence of a synchronous or coherent component. The coherence of the behavior of the characteristics of a complex system is an important feature that makes it possible to evaluate the approach of the system to sharp changes in its state. The basis for the search for precursors of sharp changes is the general idea of increasing the correlation of random fluctuations of the system parameters as it approaches the critical state. The increments in time series of stock values have a pronounced chaotic character and have a large amplitude of individual noises, against which a weak common signal can be detected only on the basis of its correlation in different scalar components of a multidimensional time series. It is known that classical methods of analysis based on the use of correlations between neighboring samples are ineffective in the processing of financial time series, since from the point of view of the correlation theory of random processes, increments in the value of shares formally have all the attributes of white noise (in particular, the “flat spectrum” and “delta-shaped” autocorrelation function). In connection with this, it is proposed to go from analyzing the initial signals to examining the sequences of their nonlinear properties calculated in time fragments of small length. As such properties, the entropy of the wavelet coefficients is used in the decomposition into the Daubechies basis, the multifractal parameters and the autoregressive measure of signal nonstationarity. Measures of synchronous behavior of time series properties in a sliding time window are constructed using the principal component method, moduli values of all pairwise correlation coefficients, and a multiple spectral coherence measure that is a generalization of the quadratic coherence spectrum between two signals. The shares of 16 large Russian companies from the beginning of 2010 to the end of 2016 were studied. Using the proposed method, two synchronization time intervals of the Russian stock market were identified: from mid-December 2013 to mid- March 2014 and from mid-October 2014 to mid-January 2016.
Keywords: financial time series, wavelets, entropy, multi-fractals, predictability, synchronization.Views (last year): 12. Citations: 2 (RSCI). -
About applying Rayleigh formula based on the Kirchhoff integral equations for the seismic exploration problems
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 761-771Views (last year): 11.In this paper we present Rayleigh formulas obtained from Kirchhoff integral formulas, which can later be used to obtain migration images. The relevance of the studies conducted in the work is due to the widespread use of migration in the interests of seismic oil and gas seismic exploration. A special feature of the work is the use of an elastic approximation to describe the dynamic behaviour of a geological environment, in contrast to the widespread acoustic approximation. The proposed approach will significantly improve the quality of seismic exploration in complex cases, such as permafrost and shelf zones of the southern and northern seas. The complexity of applying a system of equations describing the state of a linear-elastic medium to obtain Rayleigh formulas and algorithms based on them is a significant increase in the number of computations, the mathematical and analytical complexity of the resulting algorithms in comparison with the case of an acoustic medium. Therefore in industrial seismic surveys migration algorithms for the case of elastic waves are not currently used, which creates certain difficulties, since the acoustic approximation describes only longitudinal seismic waves in geological environments. This article presents the final analytical expressions that can be used to develop software systems using the description of elastic seismic waves: longitudinal and transverse, thereby covering the entire range of seismic waves: longitudinal reflected PP-waves, longitudinal reflected SP-waves, transverse reflected PS-waves and transverse reflected SS-waves. Also, the results of comparison of numerical solutions obtained on the basis of Rayleigh formulas with numerical solutions obtained by the grid-characteristic method are presented. The value of this comparison is due to the fact that the method based on Rayleigh integrals is based on analytical expressions, while the grid-characteristic method is a method of numerical integration of solutions based on a calculated grid. In the comparison, different types of sources were considered: a point source model widely used in marine and terrestrial seismic surveying and a flat wave model, which is also sometimes used in field studies.
-
Views (last year): 29.
Intersections present a very demanding environment for all the parties involved. Challenges arise from complex vehicle trajectories; occasional absence of lane markings to guide vehicles; split phases that prevent determining who has the right of way; invisible vehicle approaches; illegal movements; simultaneous interactions among pedestrians, bicycles and vehicles. Unsurprisingly, most demonstrations of AVs are on freeways; but the full potential of automated vehicles — personalized transit, driverless taxis, delivery vehicles — can only be realized when AVs can sense the intersection environment to efficiently and safely maneuver through intersections.
AVs are equipped with an array of on-board sensors to interpret and suitably engage with their surroundings. Advanced algorithms utilize data streams from such sensors to support the movement of autonomous vehicles through a wide range of traffic and climatic conditions. However, there exist situations, in which additional information about the upcoming traffic environment would be beneficial to better inform the vehicles’ in-built tracking and navigation algorithms. A potential source for such information is from in-pavement sensors at an intersection that can be used to differentiate between motorized and non-motorized modes and track road user movements and interactions. This type of information, in addition to signal phasing, can be provided to the AV as it approaches an intersection, and incorporated into an improved prior for the probabilistic algorithms used to classify and track movement in the AV’s field of vision.
This paper is concerned with the situation in which there are objects that are not visible to the AV. The driving context is that of an intersection, and the lack of visibility is due to other vehicles that obstruct the AV’s view, leading to the creation of blind zones. Such obstruction is commonplace in intersections.
Our objective is:
1) inform a vehicle crossing the intersection about its potential blind zones;
2) inform the vehicle about the presence of agents (other vehicles, bicyclists or pedestrians) in those blind zones.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




