All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
The effect of nonlinear supratransmission in discrete structures: a review
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 599-617This paper provides an overview of studies on nonlinear supratransmission and related phenomena. This effect consists in the transfer of energy at frequencies not supported by the systems under consideration. The supratransmission does not depend on the integrability of the system, it is resistant to damping and various classes of boundary conditions. In addition, a nonlinear discrete medium, under certain general conditions imposed on the structure, can create instability due to external periodic influence. This instability is the generative process underlying the nonlinear supratransmission. This is possible when the system supports nonlinear modes of various nature, in particular, discrete breathers. Then the energy penetrates into the system as soon as the amplitude of the external harmonic excitation exceeds the maximum amplitude of the static breather of the same frequency.
The effect of nonlinear supratransmission is an important property of many discrete structures. A necessary condition for its existence is the discreteness and nonlinearity of the medium. Its manifestation in systems of various nature speaks of its fundamentality and significance. This review considers the main works that touch upon the issue of nonlinear supratransmission in various systems, mainly model ones.
Many teams of authors are studying this effect. First of all, these are models described by discrete equations, including sin-Gordon and the discrete Schr¨odinger equation. At the same time, the effect is not exclusively model and manifests itself in full-scale experiments in electrical circuits, in nonlinear chains of oscillators, as well as in metastable modular metastructures. There is a gradual complication of models, which leads to a deeper understanding of the phenomenon of supratransmission, and the transition to disordered structures and those with elements of chaos structures allows us to talk about a more subtle manifestation of this effect. Numerical asymptotic approaches make it possible to study nonlinear supratransmission in complex nonintegrable systems. The complication of all kinds of oscillators, both physical and electrical, is relevant for various real devices based on such systems, in particular, in the field of nano-objects and energy transport in them through the considered effect. Such systems include molecular and crystalline clusters and nanodevices. In the conclusion of the paper, the main trends in the research of nonlinear supratransmission are given.
-
Multifractal and entropy statistics of seismic noise in Kamchatka in connection with the strongest earthquakes
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1507-1521The study of the properties of seismic noise in Kamchatka is based on the idea that noise is an important source of information about the processes preceding strong earthquakes. The hypothesis is considered that an increase in seismic hazard is accompanied by a simplification of the statistical structure of seismic noise and an increase in spatial correlations of its properties. The entropy of the distribution of squared wavelet coefficients, the width of the carrier of the multifractal singularity spectrum, and the Donoho – Johnstone index were used as statistics characterizing noise. The values of these parameters reflect the complexity: if a random signal is close in its properties to white noise, then the entropy is maximum, and the other two parameters are minimum. The statistics used are calculated for 6 station clusters. For each station cluster, daily median noise properties are calculated in successive 1-day time windows, resulting in an 18-dimensional (3 properties and 6 station clusters) time series of properties. To highlight the general properties of changes in noise parameters, a principal component method is used, which is applied for each cluster of stations, as a result of which the information is compressed into a 6-dimensional daily time series of principal components. Spatial noise coherences are estimated as a set of maximum pairwise quadratic coherence spectra between the principal components of station clusters in a sliding time window of 365 days. By calculating histograms of the distribution of cluster numbers in which the minimum and maximum values of noise statistics are achieved in a sliding time window of 365 days in length, the migration of seismic hazard areas was assessed in comparison with strong earthquakes with a magnitude of at least 7.
-
Image classification based on deep learning with automatic relevance determination and structured Bayesian pruning
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 927-938Deep learning’s power stems from complex architectures; however, these can lead to overfitting, where models memorize training data and fail to generalize to unseen examples. This paper proposes a novel probabilistic approach to mitigate this issue. We introduce two key elements: Truncated Log-Uniform Prior and Truncated Log-Normal Variational Approximation, and Automatic Relevance Determination (ARD) with Bayesian Deep Neural Networks (BDNNs). Within the probabilistic framework, we employ a specially designed truncated log-uniform prior for noise. This prior acts as a regularizer, guiding the learning process towards simpler solutions and reducing overfitting. Additionally, a truncated log-normal variational approximation is used for efficient handling of the complex probability distributions inherent in deep learning models. ARD automatically identifies and removes irrelevant features or weights within a model. By integrating ARD with BDNNs, where weights have a probability distribution, we achieve a variational bound similar to the popular variational dropout technique. Dropout randomly drops neurons during training, encouraging the model not to rely heavily on any single feature. Our approach with ARD achieves similar benefits without the randomness of dropout, potentially leading to more stable training.
To evaluate our approach, we have tested the model on two datasets: the Canadian Institute For Advanced Research (CIFAR-10) for image classification and a dataset of Macroscopic Images of Wood, which is compiled from multiple macroscopic images of wood datasets. Our method is applied to established architectures like Visual Geometry Group (VGG) and Residual Network (ResNet). The results demonstrate significant improvements. The model reduced overfitting while maintaining, or even improving, the accuracy of the network’s predictions on classification tasks. This validates the effectiveness of our approach in enhancing the performance and generalization capabilities of deep learning models.
-
Technique for analyzing noise-induced phenomena in two-component stochastic systems of reaction – diffusion type with power nonlinearity
Computer Research and Modeling, 2025, v. 17, no. 2, pp. 277-291The paper constructs and studies a generalized model describing two-component systems of reaction – diffusion type with power nonlinearity, considering the influence of external noise. A methodology has been developed for analyzing the generalized model, which includes linear stability analysis, nonlinear stability analysis, and numerical simulation of the system’s evolution. The linear analysis technique uses basic approaches, in which the characteristic equation is obtained using a linearization matrix. Nonlinear stability analysis realized up to third-order moments inclusively. For this, the functions describing the dynamics of the components are expanded in Taylor series up to third-order terms. Then, using the Novikov theorem, the averaging procedure is carried out. As a result, the obtained equations form an infinite hierarchically subordinate structure, which must be truncated at some point. To achieve this, contributions from terms higher than the third order are neglected in both the equations themselves and during the construction of the moment equations. The resulting equations form a set of linear equations, from which the stability matrix is constructed. This matrix has a rather complex structure, making it solvable only numerically. For the numerical study of the system’s evolution, the method of variable directions was chosen. Due to the presence of a stochastic component in the analyzed system, the method was modified such that random fields with a specified distribution and correlation function, responsible for the noise contribution to the overall nonlinearity, are generated across entire layers. The developed methodology was tested on the reaction – diffusion model proposed by Barrio et al., according to the results of the study, they showed the similarity of the obtained structures with the pigmentation of fish. This paper focuses on the system behavior analysis in the neighborhood of a non-zero stationary point. The dependence of the real part of the eigenvalues on the wavenumber has been examined. In the linear analysis, a range of wavenumber values is identified in which Turing instability occurs. Nonlinear analysis and numerical simulation of the system’s evolution are conducted for model parameters that, in contrast, lie outside the Turing instability region. Nonlinear analysis found noise intensities of additive noise for which, despite the absence of conditions for the emergence of diffusion instability, the system transitions to an unstable state. The results of the numerical simulation of the evolution of the tested model demonstrate the process of forming spatial structures of Turing type under the influence of additive noise.
-
The optimization approach to simulation modeling of microstructures
Computer Research and Modeling, 2013, v. 5, no. 4, pp. 597-606Views (last year): 4. Citations: 7 (RSCI).The paper presents an optimization approach to microstructure simulation. Porosity function was optimized by numerical method, grain-size model was optimized by complex method based on criteria of model quality. Methods have been validated on examples. Presented new regression model of model quality. Actual application of proposed method is 3D reconstruction of core sample microstructure. Presented results suggest to prolongation of investigations.
-
Mathematical modeling of the population dynamics of different age-group workers in the regional economy
Computer Research and Modeling, 2014, v. 6, no. 3, pp. 441-454The article deals with the nonlinear model of population dynamics of different ages workers in the regional economy. The model is built on the principles underlying modeling in econophysics. The authors demonstrate the complex dynamics of the model regimes that impose fundamental limits on medium- and long-term forecast of employment in a region. By analogy with the biophysical approach the authors propose a classification of social interactions of the different age-group workers. The model analysis is given for the level of employment among age groups. The verification of the model performs on the statistical data of the Jewish Autonomous Region.
Keywords: nonlinear dynamics, econophysics, biophysics, age group, employed population, employment, region.Views (last year): 4. Citations: 15 (RSCI). -
Molecular model of OCP-phycobilisome complex formation
Computer Research and Modeling, 2014, v. 6, no. 5, pp. 761-774A molecular model of phicobilisome complex with a quenching protein OCP which regulates the energy transfer from phicobilisome to photosystem in photosynthetic apparatus of cyanobacteria has been developed. In the model obtained a well known spatial structure of interacting proteins remains intact and also the energy transfer from phycobilisome to OCP with reasonable rates is possible. Free energy of complex formation was calculated using MM–PBSA approach. By the order of magnitude this energy is about tens of kJ/mole. This value correlates well with experimental observed low stability of this complex. The specific surface energy of interaction between hydrophylic phicobilisome and OCP is twice larger than specific surface energy of their interaction with water. This reflects a high molecular complementary of interacting protein surfaces and is a strong pro argument for proposed model.
-
Investigation of individual-based mechanisms of single-species population dynamics by logical deterministic cellular automata
Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1279-1293Views (last year): 16. Citations: 3 (RSCI).Investigation of logical deterministic cellular automata models of population dynamics allows to reveal detailed individual-based mechanisms. The search for such mechanisms is important in connection with ecological problems caused by overexploitation of natural resources, environmental pollution and climate change. Classical models of population dynamics have the phenomenological nature, as they are “black boxes”. Phenomenological models fundamentally complicate research of detailed mechanisms of ecosystem functioning. We have investigated the role of fecundity and duration of resources regeneration in mechanisms of population growth using four models of ecosystem with one species. These models are logical deterministic cellular automata and are based on physical axiomatics of excitable medium with regeneration. We have modeled catastrophic death of population arising from increasing of resources regeneration duration. It has been shown that greater fecundity accelerates population extinction. The investigated mechanisms are important for understanding mechanisms of sustainability of ecosystems and biodiversity conservation. Prospects of the presented modeling approach as a method of transparent multilevel modeling of complex systems are discussed.
-
Development of methodology for computational analysis of thermo-hydraulic processes proceeding in fast-neutron reactor with FlowVision CFD software
Computer Research and Modeling, 2017, v. 9, no. 1, pp. 87-94Views (last year): 6. Citations: 1 (RSCI).An approach to numerical analysis of thermo-hydraulic processes proceeding in a fast-neutron reactor is described in the given article. The description covers physical models, numerical schemes and geometry simplifications accepted in the computational model. Steady-state and dynamic regimes of reactor operation are considered. The steady-state regimes simulate the reactor operation at nominal power. The dynamic regimes simulate the shutdown reactor cooling by means of the heat-removal system.
Simulation of thermo-hydraulic processes is carried out in the FlowVision CFD software. A mathematical model describing the coolant flow in the first loop of the fast-neutron reactor was developed on the basis of the available geometrical model. The flow of the working fluid in the reactor simulator is calculated under the assumption that the fluid density does not depend on pressure, with use a $k–\varepsilon$ turbulence model, with use of a model of dispersed medium, and with account of conjugate heat exchange. The model of dispersed medium implemented in the FlowVision software allowed taking into account heat exchange between the heat-exchanger lops. Due to geometric complexity of the core region, the zones occupied by the two heat exchangers were modeled by hydraulic resistances and heat sources.
Numerical simulation of the coolant flow in the FlowVision software enabled obtaining the distributions of temperature, velocity and pressure in the entire computational domain. Using the model of dispersed medium allowed calculation of the temperature distributions in the second loops of the heat exchangers. Besides that, the variation of the coolant temperature along the two thermal probes is determined. The probes were located in the cool and hot chambers of the fast-neutron reactor simulator. Comparative analysis of the numerical and experimental data has shown that the developed mathematical model is correct and, therefore, it can be used for simulation of thermo-hydraulic processes proceeding in fast-neutron reactors with sodium coolant.
-
Interaction of a breather with a domain wall in a two-dimensional O(3) nonlinear sigma model
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 773-787Views (last year): 6.By numerical simulation methods the interaction processes of oscillating soliton (breather) with a 180-degree Neel domain wall in the framework of a (2 + 1)-dimensional supersymmetric O(3) nonlinear sigma model is studied. The purpose of this paper is to investigate nonlinear evolution and stability of a system of interacting localized dynamic and topological solutions. To construct the interaction models, were used a stationary breather and domain wall solutions, where obtained in the framework of the two-dimensional sine-Gordon equation by adding specially selected perturbations to the A3-field vector in the isotopic space of the Bloch sphere. In the absence of an external magnetic field, nonlinear sigma models have formal Lorentz invariance, which allows constructing, in particular, moving solutions and analyses the experimental data of the nonlinear dynamics of an interacting solitons system. In this paper, based on the obtained moving localized solutions, models for incident and head-on collisions of breathers with a domain wall are constructed, where, depending on the dynamic parameters of the system, are observed the collisions and reflections of solitons from each other, a long-range interactions and also the decay of an oscillating soliton into linear perturbation waves. In contrast to the breather solution that has the dynamics of the internal degree of freedom, the energy integral of a topologically stable soliton in the all experiments the preserved with high accuracy. For each type of interaction, the range of values of the velocity of the colliding dynamic and topological solitons is determined as a function of the rotation frequency of the A3-field vector in the isotopic space. Numerical models are constructed on the basis of methods of the theory of finite difference schemes, using the properties of stereographic projection, taking into account the group-theoretical features of constructions of the O(N) class of nonlinear sigma models of field theory. On the perimeter of the two-dimensional modeling area, specially developed boundary conditions are established that absorb linear perturbation waves radiated by interacting soliton fields. Thus, the simulation of the interaction processes of localized solutions in an infinite two-dimensional phase space is carried out. A software module has been developed that allows to carry out a complex analysis of the evolution of interacting solutions of nonlinear sigma models of field theory, taking into account it’s group properties in a two-dimensional pseudo-Euclidean space. The analysis of isospin dynamics, as well the energy density and energy integral of a system of interacting dynamic and topological solitons is carried out.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




