Результаты поиска по 'computing resource allocation':
Найдено статей: 3
  1. Ilyin V.D.
    Situational resource allocation: review of technologies for solving problems based on knowledge systems
    Computer Research and Modeling, 2025, v. 17, no. 4, pp. 543-566

    The article presents updated technologies for solving two classes of linear resource allocation problems with dynamically changing characteristics of situational management systems and awareness of experts (and/or trained robots). The search for solutions is carried out in an interactive mode of computational experiment using updatable knowledge systems about problems considered as constructive objects (in accordance with the methodology of formalization of knowledge about programmable problems created in the theory of S-symbols). The technologies are focused on implementation in the form of Internet services. The first class includes resource allocation problems solved by the method of targeted solution movement. The second is the problems of allocating a single resource in hierarchical systems, taking into account the priorities of expense items, which can be solved (depending on the specified mandatory and orienting requirements for the solution) either by the interval method of allocation (with input data and result represented by numerical segments), or by the targeted solution movement method. The problem statements are determined by requirements for solutions and specifications of their applicability, which are set by an expert based on the results of the portraits of the target and achieved situations analysis. Unlike well-known methods for solving resource allocation problems as linear programming problems, the method of targeted solution movement is insensitive to small data changes and allows to find feasible solutions when the constraint system is incompatible. In single-resource allocation technologies, the segmented representation of data and results allows a more adequate (compared to a point representation) reflection of the state of system resource space and increases the practical applicability of solutions. The technologies discussed in the article are programmatically implemented and used to solve the problems of resource basement for decisions, budget design taking into account the priorities of expense items, etc. The technology of allocating a single resource is implemented in the form of an existing online cost planning service. The methodological consistency of the technologies is confirmed by the results of comparison with known technologies for solving the problems under consideration.

  2. Klimenko A.B.
    Mathematical model and heuristic methods of distributed computations organizing in the Internet of Things systems
    Computer Research and Modeling, 2025, v. 17, no. 5, pp. 851-870

    Currently, a significant development has been observed in the direction of distributed computing theory, where computational tasks are solved collectively by resource-constrained devices. In practice, this scenario is implemented when processing data in Internet of Things systems, with the aim of reducing system latency and network infrastructure load, as data is processed on edge network computing devices. However, the rapid growth and widespread adoption of IoT systems raise questions about the need to develop methods for reducing the resource intensity of computations. The resource constraints of computing devices pose the following issues regarding the distribution of computational resources: firstly, the necessity to account for the transit cost between different devices solving various tasks; secondly, the necessity to consider the resource cost associated directly with the process of distributing computational resources, which is particularly relevant for groups of autonomous devices such as drones or robots. An analysis of modern publications available in open access demonstrated the absence of proposed models or methods for distributing computational resources that would simultaneously take into account all these factors, making the creation of a new mathematical model for organizing distributed computing in IoT systems and its solution methods topical. This article proposes a novel mathematical model for distributing computational resources along with heuristic optimization methods, providing an integrated approach to implementing distributed computing in IoT systems. A scenario is considered where there exists a leader device within a group that makes decisions concerning the allocation of computational resources, including its own, for distributed task resolution involving information exchanges. It is also assumed that no prior knowledge exists regarding which device will assume the role of leader or the migration paths of computational tasks across devices. Experimental results have shown the effectiveness of using the proposed models and heuristics: achieving up to a 52% reduction in resource costs for solving computational problems while accounting for data transit costs, saving up to 73% of resources through supplementary criteria optimizing task distribution based on minimizing fragment migrations and distances, and decreasing the resource cost of resolving the computational resource distribution problem by up to 28 times with reductions in distribution quality up to 10%.

  3. Shumov V.V.
    The model of the rationale for the focus of border security efforts at the state level
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 187-196

    The most important principle of military science and border security is the principle of concentrating the main efforts on the main directions and tasks. At the tactical level, there are many mathematical models for computing the optimal resource allocation by directions and objects, whereas at the state level there are no corresponding models. Using the statistical data on the results of the protection of the US border, an exponential type border production function parameter is calculated that reflects the organizational and technological capabilities of the border guard. The production function determines the dependence of the probability of detaining offenders from the density of border guards per kilometer of the border. Financial indicators in the production function are not taken into account, as the border maintenance budget and border equipment correlate with the number of border agents. The objective function of the border guards is defined — the total prevented damage from detained violators taking into account their expected danger for the state and society, which is to be maximized. Using Slater's condition, the solution of the problem was found — optimal density of border guard was calculated for the regions of the state. Having a model of resource allocation, the example of the three border regions of the United States has also solved the reverse problem — threats in the regions have been assessed based on the known allocation of resources. The expected danger from an individual offender on the US-Canada border is 2–5 times higher than from an offender on the US-Mexican border. The results of the calculations are consistent with the views of US security experts: illegal migrants are mostly detained on the US-Mexican border, while potential terrorists prefer to use other channels of penetration into the US (including the US-Canadian border), where the risks of being detained are minimal. Also, the results of the calculations are consistent with the established practice of border protection: in 2013 the number of border guards outside the checkpoints on the US-Mexican border increased by 2 times compared with 2001, while on the American-Canadian border — 4 times. The practice of border protection and the views of specialists give grounds for approval of the verification of the model.

    Views (last year): 26.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"