Результаты поиска по 'continuous variable categorization':
Найдено статей: 1
  1. Shakhgeldyan K.I., Kuksin N.S., Domzhalov I.G., Pak R.L., Geltser B.I.
    Random forest of risk factors as a predictive tool for adverse events in clinical medicine
    Computer Research and Modeling, 2025, v. 17, no. 5, pp. 987-1004

    The aim of study was to develop an ensemble machine learning method for constructing interpretable predictive models and to validate it using the example of predicting in-hospital mortality (IHM) in patients with ST-segment elevation myocardial infarction (STEMI).

    A retrospective cohort study was conducted using data from 5446 electronic medical records of STEMI patients who underwent percutaneous coronary intervention (PCI). Patients were divided into two groups: 335 (6.2%) patients who died during hospitalization and 5111 (93.8%) patients with a favourable in-hospital outcome. A pool of potential predictors was formed using statistical methods. Through multimetric categorization (minimizing p-values, maximizing the area under the ROC curve (AUC), and SHAP value analysis), decision trees, and multivariable logistic regression (MLR), predictors were transformed into risk factors for IHM. Predictive models for IHM were developed using MLR, Random Forest Risk Factors (RandFRF), Stochastic Gradient Boosting (XGboost), Random Forest (RF), Adaptive boosting, Gradient Boosting, Light Gradient-Boosting Machine, Categorical Boosting (CatBoost), Explainable Boosting Machine and Stacking methods.

    Authors developed the RandFRF method, which integrates the predictive outcomes of modified decision trees, identifies risk factors and ranks them based on their contribution to the risk of adverse outcomes. RandFRF enables the development of predictive models with high discriminative performance (AUC 0.908), comparable to models based on CatBoost and Stacking (AUC 0.904 and 0.908, respectively). In turn, risk factors provide clinicians with information on the patient’s risk group classification and the extent of their impact on the probability of IHM. The risk factors identified by RandFRF can serve not only as rationale for the prediction results but also as a basis for developing more accurate models.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"