Processing math: 66%
Результаты поиска по 'convergence':
Найдено статей: 88
  1. Gasnikov A.V., Gorbunov E.A., Kovalev D.A., Mohammed A.A., Chernousova E.O.
    The global rate of convergence for optimal tensor methods in smooth convex optimization
    Computer Research and Modeling, 2018, v. 10, no. 6, pp. 737-753

    In this work we consider Monteiro – Svaiter accelerated hybrid proximal extragradient (A-HPE) framework and accelerated Newton proximal extragradient (A-NPE) framework. The last framework contains an optimal method for rather smooth convex optimization problems with second-order oracle. We generalize A-NPE framework for higher order derivative oracle (schemes). We replace Newton’s type step in A-NPE that was used for auxiliary problem by Newton’s regularized (tensor) type step (Yu. Nesterov, 2018). Moreover we generalize large step A-HPE/A-NPE framework by replacing Monteiro – Svaiter’s large step condition so that this framework could work for high-order schemes. The main contribution of the paper is as follows: we propose optimal highorder methods for convex optimization problems. As far as we know for that moment there exist only zero, first and second order optimal methods that work according to the lower bounds. For higher order schemes there exists a gap between the lower bounds (Arjevani, Shamir, Shiff, 2017) and existing high-order (tensor) methods (Nesterov – Polyak, 2006; Yu.Nesterov, 2008; M. Baes, 2009; Yu.Nesterov, 2018). Asymptotically the ratio of the rates of convergences for the best existing methods and lower bounds is about 1.5. In this work we eliminate this gap and show that lower bounds are tight. We also consider rather smooth strongly convex optimization problems and show how to generalize the proposed methods to this case. The basic idea is to use restart technique until iteration sequence reach the region of quadratic convergence of Newton method and then use Newton method. One can show that the considered method converges with optimal rates up to a logarithmic factor. Note, that proposed in this work technique can be generalized in the case when we can’t solve auxiliary problem exactly, moreover we can’t even calculate the derivatives of the functional exactly. Moreover, the proposed technique can be generalized to the composite optimization problems and in particular to the constraint convex optimization problems. We also formulate a list of open questions that arise around the main result of this paper (optimal universal method of high order e.t.c.).

    Views (last year): 75.
  2. Rovenska O.G.
    Approximation of analytic functions by repeated de la Vallee Poussin sums
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 367-377

    The paper deals with the problems of approximation of periodic functions of high smoothness by arithmetic means of Fourier sums. The simplest and natural example of a linear process of approximation of continuous periodic functions of a real variable is the approximation of these functions by partial sums of the Fourier series. However, the sequences of partial Fourier sums are not uniformly convergent over the entire class of continuous 2π-periodic functions. In connection with this, a significant number of papers is devoted to the study of the approximative properties of other approximation methods, which are generated by certain transformations of the partial sums of Fourier series and allow us to construct sequences of trigonometrical polynomials that would be uniformly convergent for each function fC. In particular, over the past decades, de la Vallee Poussin sums and Fejer sums have been widely studied. One of the most important directions in this field is the study of the asymptotic behavior of upper bounds of deviations of arithmetic means of Fourier sums on different classes of periodic functions. Methods of investigation of integral representations of deviations of polynomials on the classes of periodic differentiable functions of real variable originated and received its development through the works of S.M. Nikol’sky, S.B. Stechkin, N.P. Korneichuk, V.K. Dzadyk, etc.

    The aim of the work systematizes known results related to the approximation of classes of periodic functions of high smoothness by arithmetic means of Fourier sums, and presents new facts obtained for particular cases. In the paper is studied the approximative properties of r-repeated de la Vallee Poussin sums on the classes of periodic functions that can be regularly extended into the fixed strip of the complex plane. We obtain asymptotic formulas for upper bounds of the deviations of repeated de la Vallee Poussin sums taken over classes of periodic analytic functions. In certain cases, these formulas give a solution of the corresponding Kolmogorov–Nikolsky problem. We indicate conditions under which the repeated de la Vallee Poussin sums guarantee a better order of approximation than ordinary de la Vallee Poussin sums.

    Views (last year): 45.
  3. Tyurin A.I.
    Primal-dual fast gradient method with a model
    Computer Research and Modeling, 2020, v. 12, no. 2, pp. 263-274

    In this work we consider a possibility to use the conception of (δ,L)-model of a function for optimization tasks, whereby solving a primal problem there is a necessity to recover a solution of a dual problem. The conception of (δ,L)-model is based on the conception of (δ,L)-oracle which was proposed by Devolder–Glineur–Nesterov, herewith the authors proposed approximate a function with an upper bound using a convex quadratic function with some additive noise δ. They managed to get convex quadratic upper bounds with noise even for nonsmooth functions. The conception of (δ,L)-model continues this idea by using instead of a convex quadratic function a more complex convex function in an upper bound. Possibility to recover the solution of a dual problem gives great benefits in different problems, for instance, in some cases, it is faster to find a solution in a primal problem than in a dual problem. Note that primal-dual methods are well studied, but usually each class of optimization problems has its own primal-dual method. Our goal is to develop a method which can find solutions in different classes of optimization problems. This is realized through the use of the conception of (δ,L)-model and adaptive structure of our methods. Thereby, we developed primal-dual adaptive gradient method and fast gradient method with (δ,L)-model and proved convergence rates of the methods, moreover, for some classes of optimization problems the rates are optimal. The main idea is the following: we find a dual solution to an approximation of a primal problem using the conception of (δ,L)-model. It is much easier to find a solution to an approximated problem, however, we have to do it in each step of our method, thereby the principle of “divide and conquer” is realized.

  4. Agafonov A.D.
    Lower bounds for conditional gradient type methods for minimizing smooth strongly convex functions
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 213-223

    In this paper, we consider conditional gradient methods for optimizing strongly convex functions. These are methods that use a linear minimization oracle, which, for a given vector pRn, computes the solution of the subproblem

    ArgminxXp,x.There are a variety of conditional gradient methods that have a linear convergence rate in a strongly convex case. However, in all these methods, the dimension of the problem is included in the rate of convergence, which in modern applications can be very large. In this paper, we prove that in the strongly convex case, the convergence rate of the conditional gradient methods in the best case depends on the dimension of the problem n as ˜Ω(n). Thus, the conditional gradient methods may turn out to be ineffective for solving strongly convex optimization problems of large dimensions.

    Also, the application of conditional gradient methods to minimization problems of a quadratic form is considered. The effectiveness of the Frank – Wolfe method for solving the quadratic optimization problem in the convex case on a simplex (PageRank) has already been proved. This work shows that the use of conditional gradient methods to solve the minimization problem of a quadratic form in a strongly convex case is ineffective due to the presence of dimension in the convergence rate of these methods. Therefore, the Shrinking Conditional Gradient method is considered. Its difference from the conditional gradient methods is that it uses a modified linear minimization oracle. It's an oracle, which, for a given vector pRn, computes the solution of the subproblem Argmin{p,x:xX, The convergence rate of such an algorithm does not depend on dimension. Using the Shrinking Conditional Gradient method the complexity (the total number of arithmetic operations) of solving the minimization problem of quadratic form on a \infty -ball is obtained. The resulting evaluation of the method is comparable to the complexity of the gradient method.

  5. Zhluktov S.V., Aksenov A.A., Kuranosov N.S.
    Simulation of turbulent compressible flows in the FlowVision software
    Computer Research and Modeling, 2023, v. 15, no. 4, pp. 805-825

    Simulation of turbulent compressible gas flows using turbulence models k-\varepsilon standard (KES), k-\varepsilon FlowVision (KEFV) and SST k-\omega is discussed in the given article. A new version of turbulence model KEFV is presented. The results of its testing are shown. Numerical investigation of the discharge of an over-expanded jet from a conic nozzle into unlimited space is performed. The results are compared against experimental data. The dependence of the results on computational mesh is demonstrated. The dependence of the results on turbulence specified at the nozzle inlet is demonstrated. The conclusion is drawn about necessity to allow for compressibility in two-parametric turbulence models. The simple method proposed by Wilcox in 1994 suits well for this purpose. As a result, the range of applicability of the three aforementioned two-parametric turbulence models is essentially extended. Particular values of the constants responsible for the account of compressibility in the Wilcox approach are proposed. It is recommended to specify these values in simulations of compressible flows with use of models KES, KEFV, and SST.

    In addition, the question how to obtain correct characteristics of supersonic turbulent flows using two-parametric turbulence models is considered. The calculations on different grids have shown that specifying a laminar flow at the inlet to the nozzle and wall functions at its surfaces, one obtains the laminar core of the flow up to the fifth Mach disk. In order to obtain correct flow characteristics, it is necessary either to specify two parameters characterizing turbulence of the inflowing gas, or to set a “starting” turbulence in a limited volume enveloping the region of presumable laminar-turbulent transition next to the exit from the nozzle. The latter possibility is implemented in model KEFV.

  6. Sviridenko A.B.
    The iterations’ number estimation for strongly polynomial linear programming algorithms
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 249-285

    A direct algorithm for solving a linear programming problem (LP), given in canonical form, is considered. The algorithm consists of two successive stages, in which the following LP problems are solved by a direct method: a non-degenerate auxiliary problem at the first stage and some problem equivalent to the original one at the second. The construction of the auxiliary problem is based on a multiplicative version of the Gaussian exclusion method, in the very structure of which there are possibilities: identification of incompatibility and linear dependence of constraints; identification of variables whose optimal values are obviously zero; the actual exclusion of direct variables and the reduction of the dimension of the space in which the solution of the original problem is determined. In the process of actual exclusion of variables, the algorithm generates a sequence of multipliers, the main rows of which form a matrix of constraints of the auxiliary problem, and the possibility of minimizing the filling of the main rows of multipliers is inherent in the very structure of direct methods. At the same time, there is no need to transfer information (basis, plan and optimal value of the objective function) to the second stage of the algorithm and apply one of the ways to eliminate looping to guarantee final convergence.

    Two variants of the algorithm for solving the auxiliary problem in conjugate canonical form are presented. The first one is based on its solution by a direct algorithm in terms of the simplex method, and the second one is based on solving a problem dual to it by the simplex method. It is shown that both variants of the algorithm for the same initial data (inputs) generate the same sequence of points: the basic solution and the current dual solution of the vector of row estimates. Hence, it is concluded that the direct algorithm is an algorithm of the simplex method type. It is also shown that the comparison of numerical schemes leads to the conclusion that the direct algorithm allows to reduce, according to the cubic law, the number of arithmetic operations necessary to solve the auxiliary problem, compared with the simplex method. An estimate of the number of iterations is given.

  7. Omarova A.G., Beybalayev V.D.
    Numerical solution of the third initial-boundary value problem for the nonstationary heat conduction equation with fractional derivatives
    Computer Research and Modeling, 2024, v. 16, no. 6, pp. 1345-1360

    Recently, to describe various mathematical models of physical processes, fractional differential calculus has been widely used. In this regard, much attention is paid to partial differential equations of fractional order, which are a generalization of partial differential equations of integer order. In this case, various settings are possible.

    Loaded differential equations in the literature are called equations containing values of a solution or its derivatives on manifolds of lower dimension than the dimension of the definitional domain of the desired function. Currently, numerical methods for solving loaded partial differential equations of integer and fractional orders are widely used, since analytical solving methods for solving are impossible. A fairly effective method for solving this kind of problem is the finite difference method, or the grid method.

    We studied the initial-boundary value problem in the rectangle \overline{D}=\{(x,\,t)\colon 0\leqslant x\leqslant l,\;0\leqslant t\leqslant T\} for the loaded differential heat equation with composition fractional derivative of Riemann – Liouville and Caputo – Gerasimov and with boundary conditions of the first and third kind. We have gotten an a priori assessment in differential and difference interpretations. The obtained inequalities mean the uniqueness of the solution and the continuous dependence of the solution on the input data of the problem. A difference analogue of the composition fractional derivative of Riemann – Liouville and Caputo –Gerasimov order (2-\beta ) is obtained and a difference scheme is constructed that approximates the original problem with the order O\left(\tau +h^{2-\beta } \right). The convergence of the approximate solution to the exact one is proven at a rate equal to the order of approximation of the difference scheme.

  8. Silaev D.A.
    Semilocal smoothihg S-splines
    Computer Research and Modeling, 2010, v. 2, no. 4, pp. 349-357

    Semilocal smoothing splines or S-splines from class C p are considered. These splines consist of polynomials of a degree n, first p + 1 coefficients of each polynomial are determined by values of the previous polynomial and p its derivatives at the point of splice, coefficients at higher terms of the polynomial are determined by the least squares method. These conditions are supplemented by the periodicity condition for the spline function on the whole segment of definition or by initial conditions. Uniqueness and existence theorems are proved. Stability and convergence conditions for these splines are established.

    Views (last year): 1. Citations: 6 (RSCI).
  9. Rakcheeva T.A.
    Criteria and convergence of the focal approxmation
    Computer Research and Modeling, 2013, v. 5, no. 3, pp. 379-394

    Methods of the solution of a problem of focal approximation  approach on point-by-point given smooth closed empirical curve by multifocal lemniscates are investigated. Criteria and convergence of the developed approached methods with use of the description, both in real, and in complex variables are analyzed. Topological equivalence of the used criteria is proved.

    Views (last year): 2.
  10. Karpov A.I.
    Parametric study of the thermodynamic algorithm for the prediction of steady flame spread rate
    Computer Research and Modeling, 2013, v. 5, no. 5, pp. 799-804

    The stationary flame spread rate has been calculated using the relationship based on the thermodynamic variational principle. It has been shown that proposed numerical algorithm provides the stable convergence under any initial approximation, which could be noticeably far from the searched solution.

    Views (last year): 1. Citations: 1 (RSCI).
Pages: previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"