Результаты поиска по 'dense model':
Найдено статей: 13
  1. Bratsun D.A., Kostarev K.V.
    Mathematical modeling of phase transitions during collective interaction of agents in a common thermal field
    Computer Research and Modeling, 2025, v. 17, no. 5, pp. 1005-1028

    Collective behavior can serve as a mechanism of thermoregulation and play a key role in the joint survival of a group of organisms. In higher animals, such phenomena are usually the subject of study of biology since sudden transitions to collective behavior are difficult to differentiate from the psychological and social adaptation of animals. However, in this paper, we indicate several important examples when a flock of higher animals demonstrates phase transitions similar to known phenomena in liquids and gases. This issue can also be studied experimentally within the framework of synthetic systems consisting of self-propelled robots that act according to a certain given algorithm. Generalizing both of these cases, we consider the problem of phase transitions in a dense group of interacting selfpropelled agents. Within the framework of microscopic theory, we propose a mathematical model of the phenomenon, in which agents are represented as bodies interacting with each other in accordance with an effective potential of a special type, expressing the desire of agents to move in the direction of the gradient of the joint thermal field. We show that the number of agents in the group, the group power, is the control parameter of the problem. A discrete model with individual dynamics of agents reproduces most of the phenomena observed both in natural flocks of higher animals engaged in collective thermoregulation and in synthetic complex systems. A first-order phase transition is observed, which symbolizes a change in the aggregate state in a group of agents. One observes the self-assembly of the initial weakly structured mass of agents into dense quasi-crystalline structures. We demonstrate also that, with an increase in the group power, a second-order phase transition in the form of thermal convection can occur. It manifests in a sudden liquefaction of the group and a transition to vortex motion, which ensures more efficient energy consumption in the case of a synthetic system of interacting robots and the collective survival of all individuals in the case of natural animal flocks.With an increase in the group power, secondary bifurcations occur, the vortex structure in agent medium becomes more complicated.

  2. Fokin G.A., Volgushev D.B.
    Models for spatial selection during location-aware beamforming in ultra-dense millimeter wave radio access networks
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 195-216

    The work solves the problem of establishing the dependence of the potential for spatial selection of useful and interfering signals according to the signal-to-interference ratio criterion on the positioning error of user equipment during beamforming by their location at a base station, equipped with an antenna array. Configurable simulation parameters include planar antenna array with a different number of antenna elements, movement trajectory, as well as the accuracy of user equipment location estimation using root mean square error of coordinate estimates. The model implements three algorithms for controlling the shape of the antenna radiation pattern: 1) controlling the beam direction for one maximum and one zero; 2) controlling the shape and width of the main beam; 3) adaptive beamforming. The simulation results showed, that the first algorithm is most effective, when the number of antenna array elements is no more than 5 and the positioning error is no more than 7 m, and the second algorithm is appropriate to employ, when the number of antenna array elements is more than 15 and the positioning error is more than 5 m. Adaptive beamforming is implemented using a training signal and provides optimal spatial selection of useful and interfering signals without device location data, but is characterized by high complexity of hardware implementation. Scripts of the developed models are available for verification. The results obtained can be used in the development of scientifically based recommendations for beam control in ultra-dense millimeter-wave radio access networks of the fifth and subsequent generations.

  3. Lelekov A.S., Trenkenshu R.P.
    Modeling of the macromolecular composition dynamics of microalgae batch culture
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 739-756

    The work focuses on mathematical modeling of light influence mechanisms on macromolecular composition of microalgae batch culture. It is shown that even with a single limiting factor, the growth of microalgae is associated with a significant change in the biochemical composition of the biomass in any part of the batch curve. The well-known qualitative models of microalgae are based on concepts of enzymatic kinetics and do not take into account the possible change of the limiting factor during batch culture growth. Such models do not allow describing the dynamics of the relative content of biochemical components of cells. We proposed an alternative approach which is based on generally accepted two-stage photoautotrophic growth of microalgae. Microalgae biomass can be considered as the sum of two macromolecular components — structural and reserve. At the first stage, during photosynthesis a reserve part of biomass is formed, from which the biosynthesis of cell structures occurs at the second stage. Model also assumes the proportionality of all biomass structural components which greatly simplifies mathematical calculations and experimental data fitting. The proposed mathematical model is represented by a system of two differential equations describing the synthesis of reserve biomass compounds at the expense of light and biosynthesis of structural components from reserve ones. The model takes into account that a part of the reserve compounds is spent on replenishing the pool of macroergs. The rates of synthesis of structural and reserve forms of biomass are given by linear splines. Such approach allows us to mathematically describe the change in the limiting factor with an increase in the biomass of the enrichment culture of microalgae. It is shown that under light limitation conditions the batch curve must be divided into several areas: unlimited growth, low cell concentration and optically dense culture. The analytical solutions of the basic system of equations describing the dynamics of macromolecular biomass content made it possible to determine species-specific coefficients for various light conditions. The model was verified on the experimental data of biomass growth and dynamics of chlorophyll $a$ content of the red marine microalgae Pоrphуridium purpurеum batch culture.

Pages: previous

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"