All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Computer model of a perfect-mixing extraction reactor in the format of the component circuits method with non-uniform vector connections
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 599-614The features of the component circuits method (MCC) in modeling chemical-technological systems (CTS) are considered, taking into account its practical significance. The software and algorithmic implementation of which is currently a set of computer modeling programs MARS (Modeling and Automatic Research of Systems). MARS allows the development and analysis of mathematical models with specified experimental parameters. Research and calculations were carried out using a specialized software and hardware complex MARS, which allows the development of mathematical models with specified experimental parameters. In the course of this work, the model of a perfect-mixing reactor was developed in the MARS modeling environment taking into account the physicochemical features of the uranium extraction process in the presence of nitric acid and tributyl phosphate. As results, the curves of changes of the concentration of uranium extracted into the organic phase are presented. The possibility of using MCC for the description and analysis of CTS, including extraction processes, has been confirmed. The use of the obtained results is planned to be used in the development of a virtual laboratory, which will include the main apparatus of the chemical industry, as well as complex technical controlled systems (CTСS) based on them and will allow one to acquire a wide range of professional competencies in working with “digital twins” of real control objects, including gaining initial experience working with the main equipment of the nuclear industry. In addition to the direct applied benefits, it is also assumed that the successful implementation of the domestic complex of computer modeling programs and technologies based on the obtained results will make it possible to find solutions to the problems of organizing national technological sovereignty and import substitution.
-
Determination of post-reconstruction correction factors for quantitative assessment of pathological bone lesions using gamma emission tomography
Computer Research and Modeling, 2025, v. 17, no. 4, pp. 677-696In single-photon emission computed tomography (SPECT), patients with bone disorders receive a radiopharmaceutical (RP) that accumulates selectively in pathological lesions. Accurate quantification of RP uptake plays a critical role in disease staging, prognosis, and the development of personalized treatment strategies. Traditionally, the accuracy of quantitative assessment is evaluated through in vitro clinical trials using the standardized physical NEMA IEC phantom, which contains six spheres simulating lesions of various sizes. However, such experiments are limited by high costs and radiation exposure to researchers. This study proposes an alternative in silico approach based on numerical simulation using a digital twin of the NEMA IEC phantom. The computational framework allows for extensive testing under varying conditions without physical constraints. Analogous to clinical protocols, we calculated the recovery coefficient (RCmax), defined as the ratio of the maximum activity in a lesion to its known true value. The simulation settings were tailored to clinical SPECT/CT protocols involving 99mTc for patients with bone-related diseases. For the first time, we systematically analyzed the impact of lesion-to-background ratios and post-reconstruction filtering on RCmax values. Numerical experiments revealed the presence of edge artifacts in reconstructed lesion images, consistent with those observed in both real NEMA IEC phantom studies and patient scans. These artifacts introduce instability into the iterative reconstruction process and lead to errors in activity quantification. Our results demonstrate that post-filtering helps suppress edge artifacts and stabilizes the solution. However, it also significantly underestimates activity in small lesions. To address this issue, we introduce post-reconstruction correction factors derived from our simulations to improve the accuracy of quantification in lesions smaller than 20 mm in diameter.
-
Software complex for numerical modeling of multibody system dynamics
Computer Research and Modeling, 2024, v. 16, no. 1, pp. 161-174This work deals with numerical modeling of motion of the multibody systems consisting of rigid bodies with arbitrary masses and inertial properties. We consider both planar and spatial systems which may contain kinematic loops.
The numerical modeling is fully automatic and its computational algorithm contains three principal steps. On step one a graph of the considered mechanical system is formed from the userinput data. This graph represents the hierarchical structure of the mechanical system. On step two the differential-algebraic equations of motion of the system are derived using the so-called Joint Coordinate Method. This method allows to minimize the redundancy and lower the number of the equations of motion and thus optimize the calculations. On step three the equations of motion are integrated numerically and the resulting laws of motion are presented via user interface or files.
The aforementioned algorithm is implemented in the software complex that contains a computer algebra system, a graph library, a mechanical solver, a library of numerical methods and a user interface.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




