Результаты поиска по 'dynamical models':
Найдено статей: 349
  1. Yumaganov A.S., Agafonov A.A., Myasnikov V.V.
    Reinforcement learning-based adaptive traffic signal control invariant to traffic signal configuration
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1253-1269

    In this paper, we propose an adaptive traffic signal control method invariant to the configuration of the traffic signal. The proposed method uses one neural network model to control traffic signals of various configurations, differing both in the number of controlled lanes and in the used traffic light control cycle (set of phases). To describe the state space, both dynamic information about the current state of the traffic flow and static data about the configuration of a controlled intersection are used. To increase the speed of model training and reduce the required amount of data required for model convergence, it is proposed to use an “expert” who provides additional data for model training. As an expert, we propose to use an adaptive control method based on maximizing the weighted flow of vehicles through an intersection. Experimental studies of the effectiveness of the developed method were carried out in a microscopic simulation software package. The obtained results confirmed the effectiveness of the proposed method in different simulation scenarios. The possibility of using the developed method in a simulation scenario that is not used in the training process was shown. We provide a comparison of the proposed method with other baseline solutions, including the method used as an “expert”. In most scenarios, the developed method showed the best results by average travel time and average waiting time criteria. The advantage over the method used as an expert, depending on the scenario under study, ranged from 2% to 12% according to the criterion of average vehicle waiting time and from 1% to 7% according to the criterion of average travel time.

  2. Varshavsky L.E.
    Modeling the impact of sanctions and import substitution on market performance
    Computer Research and Modeling, 2025, v. 17, no. 2, pp. 365-380

    The article considers an approach to modeling the impact of sanctions and import substitution on the performance of high-tech product markets based on the use of control theory methods (operational calculus, z-transform). The model under consideration assumes that an equipment manufacturer supplies unique high-tech equipment to a high-tech product (HP) manufacturer that dominates the equipment consumer market. The HP manufacturer, fearing disruption of equipment supplies due to the introduction of all kinds of restrictions and sanctions, invests in the development of import-substituting equipment production in a third company, which can also find application in the external market, at the expense of deductions from its profits. The influence of the following factors and actions on the performance of the conditional market is analyzed: 1) the degree of inertia of the development and production development processes in the company; 2) the share of equipment of the import-substituting company supplied to the HP manufacturer; 3) sanctions (general and selective) on the supply of equipment to the company-manufacturer of the import substitution, as well as blocking the import substitution process in the third company by the first company.

    The calculations show that the acceleration of the equipment development and production processes leads to a faster decrease in the production volumes of the first company. At the same time, an increase in price is observed, which is associated with a change in the parameters of the inverse demand function.

    An increase in the share of equipment of the import-substituting company consumed by the second company can lead to a sharp increase in production volumes in the second and third companies, stabilization of production volumes in the first company and an increase in price.

    The introduction of sanctions leads to a decrease in the production volumes and income of all companies relative to the baseline version. A significant change in price also occurs. However, due to the inertia of the equipment production processes in the example under consideration, a significant change in production volumes in the aggregate of companies occurs with a significant lag. This is especially characteristic of the third company, in which a noticeable deviation from the baseline version begins after 20 years. The blocking by the first equipment manufacturing company of investments in the development of import substitution in the third company ensures a relatively small gain for the first company in production volumes and NPV although allows to raise her market share.

  3. Zhdanova O.L., Kolbina E.A., Frisman E.Y.
    Evolutionary effects of non-selective sustainable harvesting in a genetically heterogeneous population
    Computer Research and Modeling, 2025, v. 17, no. 4, pp. 717-735

    The problem of harvest optimization remains a central challenge in mathematical biology. The concept of Maximum Sustainable Yield (MSY), widely used in optimal exploitation theory, proposes maintaining target populations at levels ensuring maximum reproduction, theoretically balancing economic benefits with resource conservation. While MSYbased management promotes population stability and system resilience, it faces significant limitations due to complex intrapopulation structures and nonlinear dynamics in exploited species. Of particular concern are the evolutionary consequences of harvesting, as artificial selection may drive changes divergent from natural selection pressures. Empirical evidence confirms that selective harvesting alters behavioral traits, reduces offspring quality, and modifies population gene pools. In contrast, the genetic impacts of non-selective harvesting remain poorly understood and require further investigation.

    This study examines how non-selective harvesting with constant removal rates affects evolution in genetically heterogeneous populations. We model genetic diversity controlled by a single diallelic locus, where different genotypes dominate at high/low densities: r-strategists (high fecundity) versus K-strategists (resource-limited resilience). The classical ecological and genetic model with discrete time is considered. The model assumes that the fitness of each genotype linearly depends on the population size. By including the harvesting withdrawal coefficient, the model allows for linking the problem of optimizing harvest with the that of predicting genotype selection.

    Analytical results demonstrate that under MSY harvesting the equilibrium genetic composition remains unchanged while population size halves. The type of genetic equilibrium may shift, as optimal harvest rates differ between equilibria. Natural K-strategist dominance may reverse toward r-strategists, whose high reproduction compensates for harvest losses. Critical harvesting thresholds triggering strategy shifts were identified.

    These findings explain why exploited populations show slow recovery after harvesting cessation: exploitation reinforces adaptations beneficial under removal pressure but maladaptive in natural conditions. For instance, captive arctic foxes select for high-productivity genotypes, whereas wild populations favor lower-fecundity/higher-survival phenotypes. This underscores the necessity of incorporating genetic dynamics into sustainable harvesting management strategies, as MSY policies may inadvertently alter evolutionary trajectories through density-dependent selection processes. Recovery periods must account for genetic adaptation timescales in management frameworks.

  4. Pak S.Y., Abakumov A.I.
    Model study of gas exchange processes in phytoplankton under the influence of photosynthetic processes and metabolism
    Computer Research and Modeling, 2025, v. 17, no. 5, pp. 963-985

    The dynamics of various gaseous substances is of great importance in the vital activity of phytoplankton. The dynamics of oxygen and carbon dioxide are the most indicative for aquatic plant communities. These dynamics are important for the global ratio of oxygen and carbon dioxide in the Earth’s atmosphere. The goal of the work is to use the mathematical modeling to study the role of oxygen and carbon dioxide in the life of aquatic plant organisms, in particular, the phytoplankton. The series of mathematical models of the dynamics of oxygen and carbon dioxide in the phytoplankton body are proposed. The series of models are built according to the increasing degree of complexity and the number of modeled processes. At first, the simplest model of only gas dynamics is considered, then there is a transition to models with the interaction and mutual influence of gases on the formation and dynamics of energy-intensive substances and on growth processes in the plant organism. Photosynthesis and respiration are considered as the basis of the models. The models study the properties of solutions: equilibrium solutions and their stability, dynamic properties of solutions. Various types of equilibrium stability, possible complex non-linear dynamics have been identified. These properties allow better orientation when choosing a model to describe processes with a known set of data and formulated modeling goals. An example of comparing an experiment with its model description is given. The next goal of modeling — to link gas dynamics for oxygen and carbon dioxide with metabolic processes in plant organisms. In the future, model designs will be applied to the analysis of ecosystem behavior when the habitat changes, including the content of gaseous substances.

  5. Vavilova D.D., Ketova K.V., Zerari R.
    Computer modeling of the gross regional product dynamics: a comparative analysis of neural network models
    Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1219-1236

    Analysis of regional economic indicators plays a crucial role in management and development planning, with Gross Regional Product (GRP) serving as one of the key indicators of economic activity. The application of artificial intelligence, including neural network technologies, enables significant improvements in the accuracy and reliability of forecasts of economic processes. This study compares three neural network algorithm models for predicting the GRP of a typical region of the Russian Federation — the Udmurt Republic — based on time series data from 2000 to 2023. The selected models include a neural network with the Bat Algorithm (BA-LSTM), a neural network model based on backpropagation error optimized with a Genetic Algorithm (GA-BPNN), and a neural network model of Elman optimized using the Particle Swarm Optimization algorithm (PSO-Elman). The research involved stages of neural network modeling such as data preprocessing, training model, and comparative analysis based on accuracy and forecast quality metrics. This approach allows for evaluating the advantages and limitations of each model in the context of GRP forecasting, as well as identifying the most promising directions for further research. The utilization of modern neural network methods opens new opportunities for automating regional economic analysis and improving the quality of forecast assessments, which is especially relevant when data are limited and for rapid decision-making. The study uses factors such as the amount of production capital, the average annual number of labor resources, the share of high-tech and knowledge-intensive industries in GRP, and an inflation indicator as input data for predicting GRP. The high accuracy of the predictions achieved by including these factors in the neural network models confirms the strong correlation between these factors and GRP. The results demonstrate the exceptional accuracy of the BA-LSTM neural network model on validation data: the coefficient of determination was 0.82, and the mean absolute percentage error was 4.19%. The high performance and reliability of this model confirm its capacity to predict effectively the dynamics of the GRP. During the forecast period up to 2030, the Udmurt Republic is expected to experience an annual increase in Gross Regional Product (GRP) of +4.6% in current prices or +2.5% in comparable 2023 prices. By 2030, the GRP is projected to reach 1264.5 billion rubles.

  6. In the article, a quasi-periodic two-component dynamical model with possibility of defining the cardio-cycle morphology, that provides the model with an ability of generating a temporal and a spectral cardiosignal characteristics, including heart rate variability is described. A technique for determining the cardio-cycle morphology to provide realistic cardio-signal form is defined. A method for defining cardio-signal dynamical system by the way of determining a three-dimensional state space and equations which describe a trajectory of point’s motion in this space is presented. A technique for solving equations of motion in the three-dimensional state space of dynamical cardio-signal system using the fourth-order Runge–Kutta method is presented. Based on this model, algorithm and software package are developed. Using software package, a cardio-signal synthesis experiment is conducted and the relationship of cardio-signal diagnostic features is analyzed.

    Views (last year): 5. Citations: 6 (RSCI).
  7. Aptukov A.M., Bratsun D.A., Lyushnin A.V.
    Modeling of behavior of panicked crowd in multi-floor branched space
    Computer Research and Modeling, 2013, v. 5, no. 3, pp. 491-508

    The collective behavior of crowd leaving a room is modeled. The model is based on molecular dynamics approach with a mixture of socio-psychological and physical forces. The new algorithm for complicatedly branched space is proposed. It suggests that each individual develops its own plan of escape, which is stochastically transformed during the evolution. The algorithm includes also the separation of original space into rooms with possible exits selected by individuals according to their probability distribution. The model is calibrated on the base of empirical data provided by fire case in the nightclub “Lame Horse” (Perm, 2009). The algorithm is realized as an end-user Java software. It is assumed that this tool could help to test the buildings for their safety for humans.

    Views (last year): 7. Citations: 10 (RSCI).
  8. Shumov V.V.
    Analysis of socio-informational influence through the examples of US wars in Korea, Vietnam, and Iraq
    Computer Research and Modeling, 2014, v. 6, no. 1, pp. 167-184

    In the first section of the paper a definition of presentation (perception) functions — components of individual’s subjective view of the world — are proposed. Using the basic psychophysical law formulated by S. Stevens, and relying on the hypotheses of socialization, rationality, individual choice, complexity of informational influences, dynamics of ideas and perceptions, and accessibility, formal dependence was derived allowing to calculate the function of presentation (perception) for probabilistic indicators (with known distribution function or subjective probability) and of interval type. In the second and third sections parameters of the presentation function according to surveys of the U.S. population related to the war in Korea, Vietnam, and Iraq are estimated.

    Views (last year): 2. Citations: 3 (RSCI).
  9. Akopov A.S., Beklaryan L.A., Beklaryan A.L., Saghatelyan A.K.
    The integrated model of eco-economic system on the example of the Republic of Armenia
    Computer Research and Modeling, 2014, v. 6, no. 4, pp. 621-631

    This article presents an integrated dynamic model of eco-economic system of the Republic of Armenia (RA). This model is constructed using system dynamics methods, which allow to consider the major feedback related to key characteristics of eco-economic system. Such model is a two-objective optimization problem where as target functions the level of air pollution and gross profit of national economy are considered. The air pollution is minimized due to modernization of stationary and mobile sources of pollution at simultaneous maximization of gross profit of national economy. At the same time considered eco-economic system is characterized by the presence of internal constraints that must be accounted at acceptance of strategic decisions. As a result, we proposed a systematic approach that allows forming sustainable solutions for the development of the production sector of RA while minimizing the impact on the environment. With the proposed approach, in particular, we can form a plan for optimal enterprise modernization and predict long-term dynamics of harmful emissions into the atmosphere.

    Views (last year): 14. Citations: 7 (RSCI).
  10. Khavinson M.J., Kolobov A.N.
    Modeling of population dynamics employed in the economic sectors: agent-oriented approach
    Computer Research and Modeling, 2018, v. 10, no. 6, pp. 919-937

    The article deals with the modeling of the number of employed population by branches of the economy at the national and regional levels. The lack of targeted distribution of workers in a market economy requires the study of systemic processes in the labor market that lead to different dynamics of the number of employed in the sectors of the economy. In this case, personal strategies for choosing labor activity by economic agents become important. The presence of different strategies leads to the emergence of strata in the labor market with a dynamically changing number of employees, unevenly distributed among the sectors of the economy. As a result, non-linear fluctuations in the number of employed population can be observed, the toolkit of agentbased modeling is relevant for the study of the fluctuations. In the article, we examined in-phase and anti-phase fluctuations in the number of employees by economic activity on the example of the Jewish Autonomous Region in Russia. The fluctuations found in the time series of statistical data for 2008–2016. We show that such fluctuations appear by age groups of workers. In view of this, we put forward a hypothesis that the agent in the labor market chooses a place of work by a strategy, related with his age group. It directly affects the distribution of the number of employed for different cohorts and the total number of employed in the sectors of the economy. The agent determines the strategy taking into account the socio-economic characteristics of the branches of the economy (different levels of wages, working conditions, prestige of the profession). We construct a basic agentoriented model of a three-branch economy to test the hypothesis. The model takes into account various strategies of economic agents, including the choice of the highest wages, the highest prestige of the profession and the best working conditions by the agent. As a result of numerical experiments, we show that the availability of various industry selection strategies and the age preferences of employers within the industry lead to periodic and complex dynamics of the number of different-aged employees. Age preferences may be a consequence, for example, the requirements of employer for the existence of work experience and education. Also, significant changes in the age structure of the employed population may result from migration.

    Views (last year): 34.
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"