All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Numerical simulation of ethylene combustion in supersonic air flow
Computer Research and Modeling, 2017, v. 9, no. 1, pp. 75-86Views (last year): 8. Citations: 3 (RSCI).In the present paper, we discuss the possibility of a simplified three-dimensional unsteady simulation of plasma-assisted combustion of gaseous fuel in a supersonic airflow. Simulation was performed by using FlowVision CFD software. Analysis of experimental geometry show that it has essentially 3D nature that conditioned by the discrete fuel injection into the flow as well as by the presence of the localized plasma filaments. Study proposes a variant of modeling geometry simplification based on symmetry of the aerodynamic duct and periodicity of the spatial inhomogeneities. Testing of modified FlowVision k–\varepsilon turbulence model named «KEFV» was performed for supersonic flow conditions. Based on that detailed grid without wall functions was used the field of heat and near fuel injection area and surfaces remote from the key area was modeled with using of wall functions, that allowed us to significantly reduce the number of cells of the computational grid. Two steps significantly simplified a complex problem of the hydrocarbon fuel ignition by means of plasma generation. First, plasma formations were simulated by volumetric heat sources and secondly, fuel combustion is reduced to one brutto reaction. Calibration and parametric optimization of the fuel injection into the supersonic flow for IADT-50 JIHT RAS wind tunnel is made by means of simulation using FlowVision CFD software. Study demonstrates a rather good agreement between the experimental schlieren photo of the flow with fuel injection and synthetical one. Modeling of the flow with fuel injection and plasma generation for the facility T131 TSAGI combustion chamber geometry demonstrates a combustion mode for the set of experimental parameters. Study emphasizes the importance of the computational mesh adaptation and spatial resolution increasing for the volumetric heat sources that model electric discharge area. A reasonable qualitative agreement between experimental pressure distribution and modeling one confirms the possibility of limited application of such simplified modeling for the combustion in high-speed flow.
-
The effect of nonlinear supratransmission in discrete structures: a review
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 599-617This paper provides an overview of studies on nonlinear supratransmission and related phenomena. This effect consists in the transfer of energy at frequencies not supported by the systems under consideration. The supratransmission does not depend on the integrability of the system, it is resistant to damping and various classes of boundary conditions. In addition, a nonlinear discrete medium, under certain general conditions imposed on the structure, can create instability due to external periodic influence. This instability is the generative process underlying the nonlinear supratransmission. This is possible when the system supports nonlinear modes of various nature, in particular, discrete breathers. Then the energy penetrates into the system as soon as the amplitude of the external harmonic excitation exceeds the maximum amplitude of the static breather of the same frequency.
The effect of nonlinear supratransmission is an important property of many discrete structures. A necessary condition for its existence is the discreteness and nonlinearity of the medium. Its manifestation in systems of various nature speaks of its fundamentality and significance. This review considers the main works that touch upon the issue of nonlinear supratransmission in various systems, mainly model ones.
Many teams of authors are studying this effect. First of all, these are models described by discrete equations, including sin-Gordon and the discrete Schr¨odinger equation. At the same time, the effect is not exclusively model and manifests itself in full-scale experiments in electrical circuits, in nonlinear chains of oscillators, as well as in metastable modular metastructures. There is a gradual complication of models, which leads to a deeper understanding of the phenomenon of supratransmission, and the transition to disordered structures and those with elements of chaos structures allows us to talk about a more subtle manifestation of this effect. Numerical asymptotic approaches make it possible to study nonlinear supratransmission in complex nonintegrable systems. The complication of all kinds of oscillators, both physical and electrical, is relevant for various real devices based on such systems, in particular, in the field of nano-objects and energy transport in them through the considered effect. Such systems include molecular and crystalline clusters and nanodevices. In the conclusion of the paper, the main trends in the research of nonlinear supratransmission are given.
-
Fast method for analyzing the electromagnetic field perturbation by small spherical scatterer
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1039-1050In this work, we consider a special approximation of the general perturbation formula for the electromagnetic field by a set of electrically small inhomogeneities located in the domain of interest. The problem considered in this paper arises in many applications of technical electrodynamics, radar technologies and subsurface remote sensing. In the general case, it is formulated as follows: at some point in the perturbed domain, it is necessary to determine the amplitude of the electromagnetic field. The perturbation of electromagnetic waves is caused by a set of electrically small scatterers distributed in space. The source of electromagnetic waves is also located in perturbed domain. The problem is solved by introducing the far field approximation and through the formulation for the scatterer radar cross section value. This, in turn, allows one to significantly speed up the calculation process of the perturbed electromagnetic field by a set of a spherical inhomogeneities identical to each other with arbitrary electrophysical parameters. In this paper, we consider only the direct scattering problem; therefore, all parameters of the scatterers are known. In this context, it may be argued that the formulation corresponds to the well-posed problem and does not imply the solution of the integral equation in the generalized formula. One of the features of the proposed algorithm is the allocation of a characteristic plane at the domain boundary. All points of observation of the state of the system belong to this plane. Set of the scatterers is located inside the observation region, which is formed by this surface. The approximation is tested by comparing the results obtained with the solution of the general formula method for the perturbation of the electromagnetic field. This approach, among other things, allows one to remove a number of restrictions on the general perturbation formula for E-filed analysis.
-
Simulation of lightning initiation on the basis of dynamical grap
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 125-147Despite numerous achievements of modern science the problem of lightning initiation in an electrodeless thundercloud, the maximum electric field strength inside which is approximately an order of magnitude lower than the dielectric strength of air, remains unsolved. Although there is no doubt that discharge activity begins with the appearance of positive streamers, which can develop under approximately half the threshold electric field as compared to negative ones, it remains unexplored how cold weakly conducting streamer systems unite in a joint hot well-conducting leader channel capable of self-propagation due to effective polarization in a relatively small external field. In this study, we present a self-organizing transport model which is applied to the case of electric discharge tree formation in a thundercloud. So, the model is aimed at numerical simulation of the initial stage of lightning discharge development. Among the innovative features of the model are the absence of grid spacing, high spatiotemporal resolution, and consideration of temporal evolution of electrical parameters of transport channels. The model takes into account the widely known asymmetry between threshold fields needed for positive and negative streamers development. In our model, the resulting well-conducting leader channel forms due to collective effect of combining the currents of tens of thousands of interacting streamer channels each of which initially has negligible conductivity and temperature that does not differ from the ambient one. The model bipolar tree is a directed graph (it has both positive and negative parts). It has morphological and electrodynamic characteristics which are intermediate between laboratory long spark and developed lightning. The model has universal character which allows to use it in other tasks related to the study of transport (in the broad sense of the word) networks.
-
Two-dimensional modeling of influence on detached supersonic gas flow caused by its turning by means of rapid local heating
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1283-1300The influence of the process of initiating a rapid local heat release near surface streamlined by supersonic gas (air) flow on the separation region that occurs during a fast turn of the flow was investigated. This surface consists of two planes that form obtuse angle when crossing, so that when flowing around the formed surface, the supersonic gas flow turns by a positive angle, which forms an oblique shock wave that interacts with the boundary layer and causes flow separation. Rapid local heating of the gas above the streamlined surface simulates long spark discharge of submicrosecond duration that crosses the flow. The gas heated in the discharge zone interacts with the separation region. The flow can be considered two-dimensional, so the numerical simulation is carried out in a two-dimensional formulation. Numerical simulation was carried out for laminar regime of flow using the sonicFoam solver of the OpenFOAM software package.
The paper describes a method for constructing a two-dimensional computational grid using hexagonal cells. A study of grid convergence has been carried out. A technique is given for setting the initial profiles of the flow parameters at the entrance to the computational domain, which makes it possible to reduce the computation time by reducing the number of computational cells. A method for non-stationary simulation of the process of rapid local heating of a gas is described, which consists in superimposing additional fields of increased pressure and temperature values calculated from the amount of energy deposited in oncoming supersonic gas flow on the corresponding fields of values obtained in the stationary case. The parameters of the energy input into the flow corresponding to the parameters of the electric discharge process, as well as the parameters of the oncoming flow, are close to the experimental values.
During analyzing numerical simulation data it was found that the initiation of rapid local heating leads to the appearance of a gas-dynamic perturbation (a quasi-cylindrical shock wave and an unsteady swirling flow), which, when interacting with the separation region, leads to a displacement of the separation point downstream. The paper considers the question of the influence of the energy spent on local heating of the gas, and of the position on the streamlined surface of the place of heating relative to the separation point, on the value of its maximum displacement.
-
Influence of the simplest type of multiparticle interactions on the example of a lattice model of an adsorption layer
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 445-458Self-organization of molecules on a solid surface is one of the promising directions for materials generation with unique magnetic, electrical, and optical properties. They can be widely used in fields such as electronics, optoelectronics, catalysis, and biology. However, the structure and physicochemical properties of adsorbed molecules are influenced by many parameters that must be taken into account when studying the self-organization of molecules. Therefore, the experimental study of such materials is expensive, and quite often it is difficult for various reasons. In such situations, it is advisable to use the mathematical modeling. One of the parameters in the considered adsorption systems is the multiparticle interaction, which is often not taken into account in simulations due to the complexity of the calculations. In this paper, we evaluated the influence of multiparticle interactions on the total energy of the system using the transfer-matrix method and the Materials Studio software package. The model of monocentric adsorption with nearest interactions on a triangular lattice was taken as the basis. Phase diagrams in the ground state were constructed and a number of thermodynamic characteristics (coverage \theta, entropy S, susceptibility \xi) were calculated at nonzero temperatures. The formation of all four ordered structures (lattice gas with \theta=0, (\sqrt{3} \times \sqrt{3}) R30^{\circ} with \theta = \frac{1}{3}, (\sqrt{3} \times \sqrt{3})R^{*}30^{\circ} with \theta = \frac{2}{3} and densest phase with \theta = 1) in a system with only pairwise interactions, and the absence of the phase (\sqrt{3}\times \sqrt{3}) R30^\circ when only three-body interactions are taken into account, were found. Using the example of an atomistic model of the trimesic acid adsorption layer by quantum mechanical methods we determined that in such a system the contribution of multiparticle interactions is 11.44% of the pair interactions energy. There are only quantitative differences at such values. The transition region from the (\sqrt{3} \times \sqrt{3}) R^{*}30^\circ to the densest phase shifts to the right by 38.25% at \frac{\varepsilon}{RT} = 4 and to the left by 23.46% at \frac{\varepsilon}{RT} = −2.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"