Результаты поиска по 'error modeling':
Найдено статей: 60
  1. Potapov I.I., Potapov D.I.
    Model of steady river flow in the cross section of a curved channel
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1163-1178

    Modeling of channel processes in the study of coastal channel deformations requires the calculation of hydrodynamic flow parameters that take into account the existence of secondary transverse currents formed at channel curvature. Three-dimensional modeling of such processes is currently possible only for small model channels; for real river flows, reduced-dimensional models are needed. At the same time, the reduction of the problem from a three-dimensional model of the river flow movement to a two-dimensional flow model in the cross-section assumes that the hydrodynamic flow under consideration is quasi-stationary and the hypotheses about the asymptotic behavior of the flow along the flow coordinate of the cross-section are fulfilled for it. Taking into account these restrictions, a mathematical model of the problem of the a stationary turbulent calm river flow movement in a channel cross-section is formulated. The problem is formulated in a mixed formulation of velocity — “vortex – stream function”. As additional conditions for problem reducing, it is necessary to specify boundary conditions on the flow free surface for the velocity field, determined in the normal and tangential direction to the cross-section axis. It is assumed that the values of these velocities should be determined from the solution of auxiliary problems or obtained from field or experimental measurement data.

    To solve the formulated problem, the finite element method in the Petrov – Galerkin formulation is used. Discrete analogue of the problem is obtained and an algorithm for solving it is proposed. Numerical studies have shown that, in general, the results obtained are in good agreement with known experimental data. The authors associate the obtained errors with the need to more accurately determine the circulation velocities field at crosssection of the flow by selecting and calibrating a more appropriate model for calculating turbulent viscosity and boundary conditions at the free boundary of the cross-section.

  2. Petrov I.B., Konov D.S., Vasyukov A.V., Muratov M.V.
    Detecting large fractures in geological media using convolutional neural networks
    Computer Research and Modeling, 2025, v. 17, no. 5, pp. 889-901

    This paper considers the inverse problem of seismic exploration — determining the structure of the media based on the recorded wave response from it. Large cracks are considered as target objects, whose size and position are to be determined.

    he direct problem is solved using the grid-characteristic method. The method allows using physically based algorithms for calculating outer boundaries of the region and contact boundaries inside the region. The crack is assumed to be thin, a special condition on the crack borders is used to describe the crack.

    The inverse problem is solved using convolutional neural networks. The input data of the neural network are seismograms interpreted as images. The output data are masks describing the medium on a structured grid. Each element of such a grid belongs to one of two classes — either an element of a continuous geological massif, or an element through which a crack passes. This approach allows us to consider a medium with an unknown number of cracks.

    The neural network is trained using only samples with one crack. The final testing of the trained network is performed using additional samples with several cracks. These samples are not involved in the training process. The purpose of testing under such conditions is to verify that the trained network has sufficient generality, recognizes signs of a crack in the signal, and does not suffer from overtraining on samples with a single crack in the media.

    The paper shows that a convolutional network trained on samples with a single crack can be used to process data with multiple cracks. The networks detects fairly small cracks at great depths if they are sufficiently spatially separated from each other. In this case their wave responses are clearly distinguishable on the seismogram and can be interpreted by the neural network. If the cracks are close to each other, artifacts and interpretation errors may occur. This is due to the fact that on the seismogram the wave responses of close cracks merge. This cause the network to interpret several cracks located nearby as one. It should be noted that a similar error would most likely be made by a human during manual interpretation of the data. The paper provides examples of some such artifacts, distortions and recognition errors.

  3. Matsak I.S., Kudryavtsev E.M., Tugaenko V.Y.
    Modelling diameter measurement errors of a wide-aperture laser beam with flat profile
    Computer Research and Modeling, 2015, v. 7, no. 1, pp. 113-124

    Work is devoted to modeling instrumental errors of a laser beam diameter measurement using a method based on a lambertian transmissive screen. Super-Lorenz distribution was used as a model of the beam. To determine the effect of each parameter on the measurement error were performed computational experiments, results of which were approximated by analytic functions. There were obtained the errors depending on relative beam size, spatial non-uniformity of the transmission screen, lens distortion, physical vignetting, beam tilt, CCD spatial resolution, ADC resolution of a camera. There was shown that the error can be less then 1 %.

    Views (last year): 3. Citations: 3 (RSCI).
  4. Davydov D.V., Shapoval A.B., Yamilov A.I.
    Languages in China provinces: quantitative estimation with incomplete data
    Computer Research and Modeling, 2016, v. 8, no. 4, pp. 707-716

    This paper formulates and solves a practical problem of data recovery regarding the distribution of languages on regional level in context of China. The necessity of this recovery is related to the problem of the determination of the linguistic diversity indices, which, in turn, are used to analyze empirically and to predict sources of social and economic development as well as to indicate potential conflicts at regional level. We use Ethnologue database and China census as the initial data sources. For every language spoken in China, the data contains (a) an estimate of China residents who claim this language to be their mother tongue, and (b) indicators of the presence of such residents in China provinces. For each pair language/province, we aim to estimate the number of the province inhabitants that claim the language to be their mother tongue. This base problem is reduced to solving an undetermined system of algebraic equations. Given additional restriction that Ethnologue database introduces data collected at different time moments because of gaps in Ethnologue language surveys and accompanying data collection expenses, we relate those data to a single time moment, that turns the initial task to an ’ill-posed’ system of algebraic equations with imprecisely determined right hand side. Therefore, we are looking for an approximate solution characterized by a minimal discrepancy of the system. Since some languages are much less distributed than the others, we minimize the weighted discrepancy, introducing weights that are inverse to the right hand side elements of the equations. This definition of discrepancy allows to recover the required variables. More than 92% of the recovered variables are robust to probabilistic modelling procedure for potential errors in initial data.

    Views (last year): 3.
  5. Prokoptsev N.G., Alekseenko A.E., Kholodov Y.A.
    Traffic flow speed prediction on transportation graph with convolutional neural networks
    Computer Research and Modeling, 2018, v. 10, no. 3, pp. 359-367

    The short-term prediction of road traffic condition is one of the main tasks of transportation modelling. The main purpose of which are traffic control, reporting of accidents, avoiding traffic jams due to knowledge of traffic flow and subsequent transportation planning. A number of solutions exist — both model-driven and data driven had proven to be successful in capturing the dynamics of traffic flow. Nevertheless, most space-time models suffer from high mathematical complexity and low efficiency. Artificial Neural Networks, one of the prominent datadriven approaches, show promising performance in modelling the complexity of traffic flow. We present a neural network architecture for traffic flow prediction on a real-world road network graph. The model is based on the combination of a recurrent neural network and graph convolutional neural network. Where a recurrent neural network is used to model temporal dependencies, and a convolutional neural network is responsible for extracting spatial features from traffic. To make multiple few steps ahead predictions, the encoder-decoder architecture is used, which allows to reduce noise propagation due to inexact predictions. To model the complexity of traffic flow, we employ multilayered architecture. Deeper neural networks are more difficult to train. To speed up the training process, we use skip-connections between each layer, so that each layer teaches only the residual function with respect to the previous layer outputs. The resulting neural network was trained on raw data from traffic flow detectors from the US highway system with a resolution of 5 minutes. 3 metrics: mean absolute error, mean relative error, mean-square error were used to estimate the quality of the prediction. It was found that for all metrics the proposed model achieved lower prediction error than previously published models, such as Vector Auto Regression, LSTM and Graph Convolution GRU.

    Views (last year): 36.
  6. Sokolov A.V., Mamkin V.V., Avilov V.K., Tarasov D.L., Kurbatova Y.A., Olchev A.V.
    Application of a balanced identification method for gap-filling in CO2 flux data in a sphagnum peat bog
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 153-171

    The method of balanced identification was used to describe the response of Net Ecosystem Exchange of CO2 (NEE) to change of environmental factors, and to fill the gaps in continuous CO2 flux measurements in a sphagnum peat bog in the Tver region. The measurements were provided in the peat bog by the eddy covariance method from August to November of 2017. Due to rainy weather conditions and recurrent periods with low atmospheric turbulence the gap proportion in measured CO2 fluxes at our experimental site during the entire period of measurements exceeded 40%. The model developed for the gap filling in long-term experimental data considers the NEE as a difference between Ecosystem Respiration (RE) and Gross Primary Production (GPP), i.e. key processes of ecosystem functioning, and their dependence on incoming solar radiation (Q), soil temperature (T), water vapor pressure deficit (VPD) and ground water level (WL). Applied for this purpose the balanced identification method is based on the search for the optimal ratio between the model simplicity and the data fitting accuracy — the ratio providing the minimum of the modeling error estimated by the cross validation method. The obtained numerical solutions are characterized by minimum necessary nonlinearity (curvature) that provides sufficient interpolation and extrapolation characteristics of the developed models. It is particularly important to fill the missing values in NEE measurements. Reviewing the temporary variability of NEE and key environmental factors allowed to reveal a statistically significant dependence of GPP on Q, T, and VPD, and RE — on T and WL, respectively. At the same time, the inaccuracy of applied method for simulation of the mean daily NEE, was less than 10%, and the error in NEE estimates by the method was higher than by the REddyProc model considering the influence on NEE of fewer number of environmental parameters. Analyzing the gap-filled time series of NEE allowed to derive the diurnal and inter-daily variability of NEE and to obtain cumulative CO2 fluxs in the peat bog for selected summer-autumn period. It was shown, that the rate of CO2 fixation by peat bog vegetation in August was significantly higher than the rate of ecosystem respiration, while since September due to strong decrease of GPP the peat bog was turned into a consistent source of CO2 for the atmosphere.

    Views (last year): 19.
  7. Mazzara M.
    Deriving specifications of dependable systems
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1637-1650

    Although human skills are heavily involved in the Requirements Engineering process, in particular, in requirements elicitation, analysis and specification, still methodology and formalism play a determining role in providing clarity and enabling analysis. In this paper, we propose a method for deriving formal specifications, which are applicable to dependable software systems. First, we clarify what the method itself is. Computer science has a proliferation of languages and methods, but the difference between the two is not always clear. This is a conceptual contribution. Furthermore, we propose the idea of Layered Fault Tolerant Specification (LFTS). The principle consists in layering specifications in (at least) two different layers: one for normal behaviors and others (if more than one) for abnormal behaviors. Abnormal behaviors are described in terms of an Error Injector (EI), which represent a model of the expected erroneous interference coming from the environment. This structure has been inspired by the notion of an idealized Fault Tolerant component, but the combination of LFTS and EI using rely guarantee thinking to describe interference is our second contribution. The overall result is the definition of a method for the specification of systems that do not run in isolation but in the real, physical world. We propose an approach that is pragmatic to its target audience: techniques must scale and be usable by non-experts, if they are to make it into an industrial setting. This article is making tentative steps, but the recent trends in Software Engineering such as Microservices, smart and software-defined buildings, M2M micropayments and Devops are relevant fields continue the investigation concerning dependability and rely guarantee thinking.

  8. Fatyanov A.G., Burmin V.Y.
    Seismic wave fields in spherically symmetric Earth with high details. Analytical solution
    Computer Research and Modeling, 2025, v. 17, no. 5, pp. 903-922

    An analytical solution is obtained for seismic wave fields in a spherically symmetric Earth. In the case of an arbitrary layered medium, the solution, which includes Bessel functions, is constructed by means of a differential sweep method. Asymptotic of Bessel functions is used for stable calculation of wave fields. It is shown that the classical asymptotic in the case of a sphere of large (in wavelengths) dimensions gives an error in the solution. The new asymptotic is used for efficient calculation of a solution without errors with high detail. A program has been created that makes it possible to carry out calculations for high-frequency (1 hertz and higher) teleseismic wave fields in a discrete (layered) sphere of planetary dimensions. Calculations can be carried even out on personal computers with OpenMP parallelization.

    In the works of Burmin (2019) proposed a spherically symmetric model of the Earth. It is characterized by the fact that in it the outer core has a viscosity and, therefore, an effective shear modulus other than zero. For this model of the Earth, a highly detailed calculation was carried out with a carrier frequency of 1 hertz. As a result of the analytical calculation, it was found that highfrequency oscillations of small amplitude, the so-called “precursors”, appear ahead of the PKP waves. An analytical calculation showed that the theoretical seismograms for this model of the Earth are in many respects similar to the experimental data. This confirms the correctness of the ideas underlying its construction.

  9. Matjushev T.V., Dvornikov M.V.
    The analysis of respiratory reactions of the person in the conditions of the changed gas environment on mathematical model
    Computer Research and Modeling, 2017, v. 9, no. 2, pp. 281-296

    The aim of the work was to study and develop methods of forecasting the dynamics of the human respiratory reactions, based on mathematical modeling. To achieve this goal have been set and solved the following tasks: developed and justified the overall structure and formalized description of the model Respiro-reflex system; built and implemented the algorithm in software models of gas exchange of the body; computational experiments and checking the adequacy of the model-based Lite-ture data and our own experimental studies.

    In this embodiment, a new comprehensive model entered partial model modified version of physicochemical properties and blood acid-base balance. In developing the model as the basis of a formalized description was based on the concept of separation of physiologically-fi system of regulation on active and passive subsystems regulation. Development of the model was carried out in stages. Integrated model of gas exchange consisted of the following special models: basic biophysical models of gas exchange system; model physicochemical properties and blood acid-base balance; passive mechanisms of gas exchange model developed on the basis of mass balance equations Grodinza F.; chemical regulation model developed on the basis of a multifactor model D. Gray.

    For a software implementation of the model, calculations were made in MatLab programming environment. To solve the equations of the method of Runge–Kutta–Fehlberga. It is assumed that the model will be presented in the form of a computer research program, which allows implements vat various hypotheses about the mechanism of the observed processes. Calculate the expected value of the basic indicators of gas exchange under giperkap Britain and hypoxia. The results of calculations as the nature of, and quantity is good enough co-agree with the data obtained in the studies on the testers. The audit on Adek-vatnost confirmed that the error calculation is within error of copper-to-biological experiments. The model can be used in the theoretical prediction of the dynamics of the respiratory reactions of the human body in a changed atmosphere.

    Views (last year): 5.
  10. Suvorov N.V., Shleymovich M.P.
    Mathematical model of the biometric iris recognition system
    Computer Research and Modeling, 2020, v. 12, no. 3, pp. 629-639

    Automatic recognition of personal identity by biometric features is based on unique peculiarities or characteristics of people. Biometric identification process consist in making of reference templates and comparison with new input data. Iris pattern recognition algorithms presents high accuracy and low identification errors percent on practice. Iris pattern advantages over other biometric features are determined by its high degree of freedom (nearly 249), excessive density of unique features and constancy. High recognition reliability level is very important because it provides search in big databases. Unlike one-to-one check mode that is applicable only to small calculation count it allows to work in one-to-many identification mode. Every biometric identification system appears to be probabilistic and qualitative characteristics description utilizes such parameters as: recognition accuracy, false acceptance rate and false rejection rate. These characteristics allows to compare identity recognition methods and asses the system performance under any circumstances. This article explains the mathematical model of iris pattern biometric identification and its characteristics. Besides, there are analyzed results of comparison of model and real recognition process. To make such analysis there was carried out the review of existing iris pattern recognition methods based on different unique features vector. The Python-based software package is described below. It builds-up probabilistic distributions and generates large test data sets. Such data sets can be also used to educate the identification decision making neural network. Furthermore, synergy algorithm of several iris pattern identification methods was suggested to increase qualitative characteristics of system in comparison with the use of each method separately.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"