All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Analysis of the effectiveness of machine learning methods in the problem of gesture recognition based on the data of electromyographic signals
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 175-194Gesture recognition is an urgent challenge in developing systems of human-machine interfaces. We analyzed machine learning methods for gesture classification based on electromyographic muscle signals to identify the most effective one. Methods such as the naive Bayesian classifier (NBC), logistic regression, decision tree, random forest, gradient boosting, support vector machine (SVM), k-nearest neighbor algorithm, and ensembles (NBC and decision tree, NBC and gradient boosting, gradient boosting and decision tree) were considered. Electromyography (EMG) was chosen as a method of obtaining information about gestures. This solution does not require the location of the hand in the field of view of the camera and can be used to recognize finger movements. To test the effectiveness of the selected methods of gesture recognition, a device was developed for recording the EMG signal, which includes three electrodes and an EMG sensor connected to the microcontroller and the power supply. The following gestures were chosen: clenched fist, “thumb up”, “Victory”, squeezing an index finger and waving a hand from right to left. Accuracy, precision, recall and execution time were used to evaluate the effectiveness of classifiers. These parameters were calculated for three options for the location of EMG electrodes on the forearm. According to the test results, the most effective methods are k-nearest neighbors’ algorithm, random forest and the ensemble of NBC and gradient boosting, the average accuracy of ensemble for three electrode positions was 81.55%. The position of the electrodes was also determined at which machine learning methods achieve the maximum accuracy. In this position, one of the differential electrodes is located at the intersection of the flexor digitorum profundus and flexor pollicis longus, the second — above the flexor digitorum superficialis.
-
Development of a computational environment for mathematical modeling of superconducting nanostructures with a magnet
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1349-1358Now days the main research activity in the field of nanotechnology is aimed at the creation, study and application of new materials and new structures. Recently, much attention has been attracted by the possibility of controlling magnetic properties using a superconducting current, as well as the influence of magnetic dynamics on the current–voltage characteristics of hybrid superconductor/ferromagnet (S/F) nanostructures. In particular, such structures include the S/F/S Josephson junction or molecular nanomagnets coupled to the Josephson junctions. Theoretical studies of the dynamics of such structures need processes of a large number of coupled nonlinear equations. Numerical modeling of hybrid superconductor/magnet nanostructures implies the calculation of both magnetic dynamics and the dynamics of the superconducting phase, which strongly increases their complexity and scale, so it is advisable to use heterogeneous computing systems.
In the course of studying the physical properties of these objects, it becomes necessary to numerically solve complex systems of nonlinear differential equations, which requires significant time and computational resources.
The currently existing micromagnetic algorithms and frameworks are based on the finite difference or finite element method and are extremely useful for modeling the dynamics of magnetization on a wide time scale. However, the functionality of existing packages does not allow to fully implement the desired computation scheme.
The aim of the research is to develop a unified environment for modeling hybrid superconductor/magnet nanostructures, providing access to solvers and developed algorithms, and based on a heterogeneous computing paradigm that allows research of superconducting elements in nanoscale structures with magnets and hybrid quantum materials. In this paper, we investigate resonant phenomena in the nanomagnet system associated with the Josephson junction. Such a system has rich resonant physics. To study the possibility of magnetic reversal depending on the model parameters, it is necessary to solve numerically the Cauchy problem for a system of nonlinear equations. For numerical simulation of hybrid superconductor/magnet nanostructures, a computing environment based on the heterogeneous HybriLIT computing platform is implemented. During the calculations, all the calculation times obtained were averaged over three launches. The results obtained here are of great practical importance and provide the necessary information for evaluating the physical parameters in superconductor/magnet hybrid nanostructures.
-
Modeling the kinetics of radiopharmaceuticals with iodine isotopes in nuclear medicine problems
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 883-905Radiopharmaceuticals with iodine radioisotopes are now widely used in imaging and non-imaging methods of nuclear medicine. When evaluating the results of radionuclide studies of the structural and functional state of organs and tissues, parallel modeling of the kinetics of radiopharmaceuticals in the body plays an important role. The complexity of such modeling lies in two opposite aspects. On the one hand, excessive simplification of the anatomical and physiological characteristics of the organism when splitting it to the compartments that may result in the loss or distortion of important clinical diagnosis information, on the other – excessive, taking into account all possible interdependencies of the functioning of the organs and systems that, on the contrary, will lead to excess amount of absolutely useless for clinical interpretation of the data or the mathematical model becomes even more intractable. Our work develops a unified approach to the construction of mathematical models of the kinetics of radiopharmaceuticals with iodine isotopes in the human body during diagnostic and therapeutic procedures of nuclear medicine. Based on this approach, three- and four-compartment pharmacokinetic models were developed and corresponding calculation programs were created in the C++ programming language for processing and evaluating the results of radionuclide diagnostics and therapy. Various methods for identifying model parameters based on quantitative data from radionuclide studies of the functional state of vital organs are proposed. The results of pharmacokinetic modeling for radionuclide diagnostics of the liver, kidney, and thyroid using iodine-containing radiopharmaceuticals are presented and analyzed. Using clinical and diagnostic data, individual pharmacokinetic parameters of transport of different radiopharmaceuticals in the body (transport constants, half-life periods, maximum activity in the organ and the time of its achievement) were determined. It is shown that the pharmacokinetic characteristics for each patient are strictly individual and cannot be described by averaged kinetic parameters. Within the framework of three pharmacokinetic models, “Activity–time” relationships were obtained and analyzed for different organs and tissues, including for tissues in which the activity of a radiopharmaceutical is impossible or difficult to measure by clinical methods. Also discussed are the features and the results of simulation and dosimetric planning of radioiodine therapy of the thyroid gland. It is shown that the values of absorbed radiation doses are very sensitive to the kinetic parameters of the compartment model. Therefore, special attention should be paid to obtaining accurate quantitative data from ultrasound and thyroid radiometry and identifying simulation parameters based on them. The work is based on the principles and methods of pharmacokinetics. For the numerical solution of systems of differential equations of the pharmacokinetic models we used Runge–Kutta methods and Rosenbrock method. The Hooke–Jeeves method was used to find the minimum of a function of several variables when identifying modeling parameters.
-
Changepoint detection in biometric data: retrospective nonparametric segmentation methods based on dynamic programming and sliding windows
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1295-1321This paper is dedicated to the analysis of medical and biological data obtained through locomotor training and testing of astronauts conducted both on Earth and during spaceflight. These experiments can be described as the astronaut’s movement on a treadmill according to a predefined regimen in various speed modes. During these modes, not only the speed is recorded but also a range of parameters, including heart rate, ground reaction force, and others, are collected. In order to analyze the dynamics of the astronaut’s condition over an extended period, it is necessary to perform a qualitative segmentation of their movement modes to independently assess the target metrics. This task becomes particularly relevant in the development of an autonomous life support system for astronauts that operates without direct supervision from Earth. The segmentation of target data is complicated by the presence of various anomalies, such as deviations from the predefined regimen, arbitrary and varying duration of mode transitions, hardware failures, and other factors. The paper includes a detailed review of several contemporary retrospective (offline) nonparametric methods for detecting multiple changepoints, which refer to sudden changes in the properties of the observed time series occurring at unknown moments. Special attention is given to algorithms and statistical measures that determine the homogeneity of the data and methods for detecting change points. The paper considers approaches based on dynamic programming and sliding window methods. The second part of the paper focuses on the numerical modeling of these methods using characteristic examples of experimental data, including both “simple” and “complex” speed profiles of movement. The analysis conducted allowed us to identify the preferred methods, which will be further evaluated on the complete dataset. Preference is given to methods that ensure the closeness of the markup to a reference one, potentially allow the detection of both boundaries of transient processes, as well as are robust relative to internal parameters.
-
Personalization of mathematical models in cardiology: obstacles and perspectives
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 911-930Most biomechanical tasks of interest to clinicians can be solved only using personalized mathematical models. Such models allow to formalize and relate key pathophysiological processes, basing on clinically available data evaluate non-measurable parameters that are important for the diagnosis of diseases, predict the result of a therapeutic or surgical intervention. The use of models in clinical practice imposes additional restrictions: clinicians require model validation on clinical cases, the speed and automation of the entire calculated technological chain, from processing input data to obtaining a result. Limitations on the simulation time, determined by the time of making a medical decision (of the order of several minutes), imply the use of reduction methods that correctly describe the processes under study within the framework of reduced models or machine learning tools.
Personalization of models requires patient-oriented parameters, personalized geometry of a computational domain and generation of a computational mesh. Model parameters are estimated by direct measurements, or methods of solving inverse problems, or methods of machine learning. The requirement of personalization imposes severe restrictions on the number of fitted parameters that can be measured under standard clinical conditions. In addition to parameters, the model operates with boundary conditions that must take into account the patient’s characteristics. Methods for setting personalized boundary conditions significantly depend on the clinical setting of the problem and clinical data. Building a personalized computational domain through segmentation of medical images and generation of the computational grid, as a rule, takes a lot of time and effort due to manual or semi-automatic operations. Development of automated methods for setting personalized boundary conditions and segmentation of medical images with the subsequent construction of a computational grid is the key to the widespread use of mathematical modeling in clinical practice.
The aim of this work is to review our solutions for personalization of mathematical models within the framework of three tasks of clinical cardiology: virtual assessment of hemodynamic significance of coronary artery stenosis, calculation of global blood flow after hemodynamic correction of complex heart defects, calculating characteristics of coaptation of reconstructed aortic valve.
Keywords: computational biomechanics, personalized model. -
Reinforcement learning in optimisation of financial market trading strategy parameters
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1793-1812High frequency algorithmic trading became is a subclass of trading which is focused on gaining basis-point like profitability on sub-second time frames. Such trading strategies do not depend on most of the factors eligible for the longer-term trading and require specific approach. There were many attempts to utilize machine learning techniques to both high and low frequency trading. However, it is still having limited application in the real world trading due to high exposure to overfitting, requirements for rapid adaptation to new market regimes and overall instability of the results. We conducted a comprehensive research on combination of known quantitative theory and reinforcement learning methods in order derive more effective and robust approach at construction of automated trading system in an attempt to create a support for a known algorithmic trading techniques. Using classical price behavior theories as well as modern application cases in sub-millisecond trading, we utilized the Reinforcement Learning models in order to improve quality of the algorithms. As a result, we derived a robust model which utilize Deep Reinforcement learning in order to optimise static market making trading algorithms’ parameters capable of online learning on live data. More specifically, we explored the system in the derivatives cryptocurrency market which mostly not dependent on external factors in short terms. Our research was implemented in high-frequency environment and the final models showed capability to operate within accepted high-frequency trading time-frames. We compared various combinations of Deep Reinforcement Learning approaches and the classic algorithms and evaluated robustness and effectiveness of improvements for each combination.
-
Reduced model of photosystem II and its use to evaluate the photosynthetic apparatus characteristics according to the fluorescence induction curves
Computer Research and Modeling, 2012, v. 4, no. 4, pp. 943-958Views (last year): 3. Citations: 2 (RSCI).The approach for the analysis of some large-scale biological systems, on the base of quasiequilibrium stages is proposed. The approach allows us to reduce the detailed large-scaled models and obtain the simplified model with an analytical solution. This makes it possible to reproduce the experimental curves with a good accuracy. This approach has been applied to a detailed model of the primary processes of photosynthesis in the reaction center of photosystem II. The resulting simplified model of photosystem II describes the experimental fluorescence induction curves for higher and lower plants, obtained under different light intensities. Derived relationships between variables and parameters of detailed and simplified models, allow us to use parameters of simplified model to describe the dynamics of various states of photosystem II detailed model.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"