Результаты поиска по 'focuses':
Найдено статей: 61
  1. Zhidkov E.P., Voloshina I.G., Polyakova R.V., Perepelkin E.E., Rossiyskaya N.S., Shavrina T.V., Yudin I.P.
    Computer modeling of magnet systems for physical setups
    Computer Research and Modeling, 2009, v. 1, no. 2, pp. 189-198

    This work gives results of numerical simulation of a superconducting magnetic focusing system. While modeling this system, special care was taken to achieve approximation accuracy over the condition u(∞)=0 by using Richardson method. The work presents the results of comparison of the magnetic field calculated distribution with measurements of the field performed on a modified magnet SP-40 of “MARUSYA” physical installation. This work also presents some results of numeric analysis of magnetic systems of “MARUSYA” physical installation with the purpose to study an opportunity of designing magnetic systems with predetermined characteristics of the magnetic field.

    Views (last year): 4. Citations: 2 (RSCI).
  2. Maslovskaya A.G., Sivunov A.V.
    The use of finite element method for simulation of heat conductivity processes in polar dielectrics irradiated by electron bunches
    Computer Research and Modeling, 2012, v. 4, no. 4, pp. 767-780

    The paper describes the results of computer simulation of time-dependent temperature fields arising in polar dielectrics irradiated by focused electron bunches with average electron energy when analyzing with electron microscopy techniques. The mathematical model was based on solving several-dimensional nonstationary heat conduction equation with use of numerical finite element method. The approximation of thermal source was performed taking into account the estimation of initial electron distribution determined by Monte-Carlo simulation of electron trajectories. The simulation program was designed in Matlab. The geometrical modeling and calculation results demonstrated the main features of model sample heating by electron beam were presented at the given experimental parameters as well as source approximation.

    Views (last year): 5. Citations: 3 (RSCI).
  3. Didych Y.O., Malinetsky G.G.
    The analysis of player’s behaviour in modified “Sea battle” game
    Computer Research and Modeling, 2016, v. 8, no. 5, pp. 817-827

    The well-known “Sea battle” game is in the focus of the current job. The main goal of the article is to provide modified version of “Sea battle” game and to find optimal players’ strategies in the new rules. Changes were applied to attacking strategies (new option to attack hitting four cells in one shot was added) as well as to the size of the field (sizes of 10 × 10, 20 × 20, 30 × 30 were used) and to the rules of disposal algorithms during the game (new possibility to move the ship off the attacking zone). The game was solved with the use of game theory capabilities: payoff matrices were found for each version of altered rules, for which optimal pure and mixed strategies were discovered. For solving payoff matrices iterative method was used. The simulation was in applying five attacking algorithms and six disposal ones with parameters variation due to the game of players with each other. Attacking algorithms were varied in 100 sets of parameters, disposal algorithms — in 150 sets. Major result is that using such algorithms the modified “Sea battle” game can be solved — that implies the possibility of finding stable pure and mixed strategies of behaviour, which guarantee the sides gaining optimal results in game theory terms. Moreover, influence of modifying the rules of “Sea battle” game is estimated. Comparison with prior authors’ results on this topic was made. Based on matching the payoff matrices with the statistical analysis, completed earlier, it was found out that standard “Sea battle” game could be represented as a special case of game modifications, observed in this article. The job is important not only because of its applications in war area, but in civil areas as well. Use of article’s results could save resources in exploration, provide an advantage in war conflicts, defend devices under devastating impact.

    Views (last year): 18.
  4. Chernyadiev S.A., Zhilyakov A.V., Gorbatov V.I., Korobova N.Y., Sivkova N.I., Aretinsky A.V., Chernookov A.I.
    Mathematical modeling of thermophysical processes in the wall of the Baker cyst, when intra-cystic fluid is heated by laser radiation 1.47 μm in length
    Computer Research and Modeling, 2018, v. 10, no. 1, pp. 103-112

    The work is devoted to the study of the theoretical value of destructive influence on normal tissues of an organism by infrared radiation that goes beyond the treated pathological focus. This situation is possible if the direct laser radiation on the tissues is extremely long-acting. The solution to this problem can be the uniform distribution of heat inside the volume through indirect heating of the liquid, which contributes to minimal damage to the perifocal structures. A non-stationary thermophysical model of the process of heat propagation in biological tissues is presented, allowing to carry out studies of energy transfer from internal liquid contents of Baker's cyst heated by infrared laser radiation of a given specific power through a certain thickness of its wall to surrounding biological tissues. Calculation of the spacetime temperature distribution in the cyst wall and surrounding fat tissue is carried out by the finite-difference method. The time of effective exposure to temperature on the entire thickness of the cyst wall was estimated to be 55 ° C on its outer surface. The safety procedure ensures the exposure duration of this value is not more than 10 seconds.

    As a result of the calculations carried out, it is established that there are several operating modes of a surgical laser that meet all the safety requirements with a simultaneous effective procedure. Local one-sided hyperthermia of the synovial membrane and subsequent coagulation of the entire wall thickness due to heat transfer contributes to the elimination of the cavity neoplasm of the popliteal region. With a thickness of 3 mm, the heating mode is satisfactory, under which the exposure time lasts about 200 seconds, and the specific power of the laser radiation in the internal medium of the liquid contents of the Baker cyst is approximately 1.

    Views (last year): 21. Citations: 2 (RSCI).
  5. Frisman Y.Y., Kulakov M.P., Revutskaya O.L., Zhdanova O.L., Neverova G.P.
    The key approaches and review of current researches on dynamics of structured and interacting populations
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 119-151

    The review and systematization of current papers on the mathematical modeling of population dynamics allow us to conclude the key interests of authors are two or three main research lines related to the description and analysis of the dynamics of both local structured populations and systems of interacting homogeneous populations as ecological community in physical space. The paper reviews and systematizes scientific studies and results obtained within the framework of dynamics of structured and interacting populations to date. The paper describes the scientific idea progress in the direction of complicating models from the classical Malthus model to the modern models with various factors affecting population dynamics in the issues dealing with modeling the local population size dynamics. In particular, they consider the dynamic effects that arise as a result of taking into account the environmental capacity, density-dependent regulation, the Allee effect, complexity of an age and a stage structures. Particular attention is paid to the multistability of population dynamics. In addition, studies analyzing harvest effect on structured population dynamics and an appearance of the hydra effect are presented. The studies dealing with an appearance and development of spatial dissipative structures in both spatially separated populations and communities with migrations are discussed. Here, special attention is also paid to the frequency and phase multistability of population dynamics, as well as to an appearance of spatial clusters. During the systematization and review of articles on modeling the interacting population dynamics, the focus is on the “prey–predator” community. The key idea and approaches used in current mathematical biology to model a “prey–predator” system with community structure and harvesting are presented. The problems of an appearance and stability of the mosaic structure in communities distributed spatially and coupled by migration are also briefly discussed.

    Views (last year): 40. Citations: 2 (RSCI).
  6. Andruschenko V.A., Stupitsky E.L.
    Numerical studies of the structure of perturbed regions formed by powerful explosions at various heights. A review
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 97-140

    The review is based on some of the authors ’early works of particular scientific, methodological and practical interest and the greatest attention is paid to recent works, where quite detailed numerical studies of not only single, but also double and multiple explosions in a wide range of heights and environmental conditions have been performed . Since the shock wave of a powerful explosion is one of the main damaging factors in the lower atmosphere, the review focuses on both the physical analysis of their propagation and their interaction. Using the three-dimensional algorithms developed by the authors, the effects of interference and diffraction of several shock waves, which are interesting from a physical point of view, in the absence and presence of an underlying surface of various structures are considered. Quantitative characteristics are determined in the region of their maximum values, which is of known practical interest. For explosions in a dense atmosphere, some new analytical solutions based on the small perturbation method have been found that are convenient for approximate calculations. For a number of conditions, the possibility of using the self-similar properties of equations of the first and second kind to solve problems on the development of an explosion has been shown.

    Based on numerical analysis, a fundamental change in the structure of the development of the perturbed region with a change in the height of the explosion in the range of 100–120 km is shown. At altitudes of more than 120 km, the geomagnetic field begins to influence the development of the explosion; therefore, even for a single explosion, the picture of the plasma flow after a few seconds becomes substantially three-dimensional. For the calculation of explosions at altitudes of 120–1000 km under the guidance of academician A. Kholodov. A special three-dimensional numerical algorithm based on the MHD approximation was developed. Numerous calculations were performed and for the first time a quite detailed picture of the three-dimensional flow of the explosion plasma was obtained with the formation of an upward jet in 5–10 s directed in the meridional plane approximately along the geomagnetic field. After some modification, this algorithm was used to calculate double explosions in the ionosphere, spaced a certain distance. The interaction between them was carried out both by plasma flows and through a geomagnetic field. Some results are given in this review and are described in detail in the original articles.

  7. Kurushina S.E., Fedorova E.A., Gurovskaia I.A.
    Technique for analyzing noise-induced phenomena in two-component stochastic systems of reaction – diffusion type with power nonlinearity
    Computer Research and Modeling, 2025, v. 17, no. 2, pp. 277-291

    The paper constructs and studies a generalized model describing two-component systems of reaction – diffusion type with power nonlinearity, considering the influence of external noise. A methodology has been developed for analyzing the generalized model, which includes linear stability analysis, nonlinear stability analysis, and numerical simulation of the system’s evolution. The linear analysis technique uses basic approaches, in which the characteristic equation is obtained using a linearization matrix. Nonlinear stability analysis realized up to third-order moments inclusively. For this, the functions describing the dynamics of the components are expanded in Taylor series up to third-order terms. Then, using the Novikov theorem, the averaging procedure is carried out. As a result, the obtained equations form an infinite hierarchically subordinate structure, which must be truncated at some point. To achieve this, contributions from terms higher than the third order are neglected in both the equations themselves and during the construction of the moment equations. The resulting equations form a set of linear equations, from which the stability matrix is constructed. This matrix has a rather complex structure, making it solvable only numerically. For the numerical study of the system’s evolution, the method of variable directions was chosen. Due to the presence of a stochastic component in the analyzed system, the method was modified such that random fields with a specified distribution and correlation function, responsible for the noise contribution to the overall nonlinearity, are generated across entire layers. The developed methodology was tested on the reaction – diffusion model proposed by Barrio et al., according to the results of the study, they showed the similarity of the obtained structures with the pigmentation of fish. This paper focuses on the system behavior analysis in the neighborhood of a non-zero stationary point. The dependence of the real part of the eigenvalues on the wavenumber has been examined. In the linear analysis, a range of wavenumber values is identified in which Turing instability occurs. Nonlinear analysis and numerical simulation of the system’s evolution are conducted for model parameters that, in contrast, lie outside the Turing instability region. Nonlinear analysis found noise intensities of additive noise for which, despite the absence of conditions for the emergence of diffusion instability, the system transitions to an unstable state. The results of the numerical simulation of the evolution of the tested model demonstrate the process of forming spatial structures of Turing type under the influence of additive noise.

  8. Mitrofanova A.Y., Temnaya O.S., Safin A.R., Kravchenko O.V., Nikitov S.A.
    Simulation of spin wave amplification using the method of characteristics to the transport equation
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 795-803

    The paper presents an analysis of the nonlinear equation of spin wave transport by the method of characteristics. The conclusion of a new mathematical model of spin wave propagation is presented for the solution of which the characteristic is applied. The behavior analysis of the behavior of the real and imaginary parts of the wave and its amplitude is performed. The phase portraits demonstrate the dependence of the desired function on the nonlinearity coefficient. It is established that the real and imaginary parts of the wave oscillate by studying the nature of the evolution of the initial wave profile by the phase plane method. The transition of trajectories from an unstable focus to a limiting cycle, which corresponds to the oscillation of the real and imaginary parts, is shown. For the amplitude of the wave, such a transition is characterized by its amplification or attenuation (depending on the nonlinearity coefficient and the chosen initial conditions) up to a certain threshold value. It is shown that the time of the transition process from amplification (attenuation) to stabilization of the amplitude also depends on the nonlinearity parameter. It was found out that at the interval of amplification of the amplitude of the spin wave, the time of the transition process decreases, and lower amplitude values correspond to higher parameters of nonlinearity.

  9. Bashkirtseva I.A., Perevalova T.V., Ryashko L.B.
    Stochastic sensitivity analysis of dynamic transformations in the “two prey – predator” model
    Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1343-1356

    This work is devoted to the study of the problem of modeling and analyzing complex oscillatory modes, both regular and chaotic, in systems of interacting populations in the presence of random perturbations. As an initial conceptual deterministic model, a Volterra system of three differential equations is considered, which describes the dynamics of prey populations of two competing species and a predator. This model takes into account the following key biological factors: the natural increase in prey, their intraspecific and interspecific competition, the extinction of predators in the absence of prey, the rate of predation by predators, the growth of the predator population due to predation, and the intensity of intraspecific competition in the predator population. The growth rate of the second prey population is used as a bifurcation parameter. At a certain interval of variation of this parameter, the system demonstrates a wide variety of dynamic modes: equilibrium, oscillatory, and chaotic. An important feature of this model is multistability. In this paper, we focus on the study of the parametric zone of tristability, when a stable equilibrium and two limit cycles coexist in the system. Such birhythmicity in the presence of random perturbations generates new dynamic modes that have no analogues in the deterministic case. The aim of the paper is a detailed study of stochastic phenomena caused by random fluctuations in the growth rate of the second population of prey. As a mathematical model of such fluctuations, we consider white Gaussian noise. Using methods of direct numerical modeling of solutions of the corresponding system of stochastic differential equations, the following phenomena have been identified and described: unidirectional stochastic transitions from one cycle to another, trigger mode caused by transitions between cycles, noise-induced transitions from cycles to the equilibrium, corresponding to the extinction of the predator and the second prey population. The paper presents the results of the analysis of these phenomena using the Lyapunov exponents, and identifies the parametric conditions for transitions from order to chaos and from chaos to order. For the analytical study of such noise-induced multi-stage transitions, the technique of stochastic sensitivity functions and the method of confidence regions were applied. The paper shows how this mathematical apparatus allows predicting the intensity of noise, leading to qualitative transformations of the modes of stochastic population dynamics.

  10. In this paper, we consider predator – prey models and carry out a global bifurcation analysis of the Leslie –Gower system with an additive Allee effect and a simplified Holling type III functional response, which models the dynamics of predator and prey populations in a given ecological or biomedical system. This system uses the most common mathematical form of expressing the Allee effect (or law) through the prey growth function. Allee’s law states that there is a very specific relationship between individual fitness to living conditions and the number or density of individuals of a given species, namely: with an increase in the population size, the ability to survive and reproductive ability also increases. After algebraic transformations, the rational Leslie –Gower system with additive Allee effect and simplified Holling type III functional response can be written as a quantic-sextic dynamical system, i. e., as a system with polynomials of the fifth and sixth degrees. Using information about its singular points and applying our bifurcation-geometric approach to qualitative analysis, we study global bifurcations of limit cycles of the quintic-sextic system. To control all limit cycle bifurcations, especially bifurcations of multiple limit cycles, it is necessary to know the properties and combine the actions of all parameters rotating the vector field of the system. This can be done using the Wintner – Perko termination principle, according to which a maximal one-parameter family of multiple limit cycles terminates either at a singular point, which typically has the same multiplicity (cyclicity), or at a separatrix cycle, which also typically has the same multiplicity (cyclicity). This principle is a consequence of the principle of natural termination which was stated for higher-dimensional dynamical systems by Wintner who studied one-parameter families of periodic orbits of the restricted three-body problem and proved that in the analytic case any oneparameter family of periodic orbits can be uniquely continued through any bifurcation except a period-doubling bifurcation. Applying the planar Wintner – Perko principle, we prove that if the cyclicity of the focus in the system under consideration is three, then the system can have at most three limit cycles surrounding one singular point.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"