All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Using feedback functions to solve parametric programming problems
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1125-1151We consider a finite-dimensional optimization problem, the formulation of which in addition to the required variables contains parameters. The solution to this problem is a dependence of optimal values of variables on parameters. In general, these dependencies are not functions because they can have ambiguous meanings and in the functional case be nondifferentiable. In addition, their domain of definition may be narrower than the domains of definition of functions in the condition of the original problem. All these properties make it difficult to solve both the original parametric problem and other tasks, the statement of which includes these dependencies. To overcome these difficulties, usually methods such as non-differentiable optimization are used.
This article proposes an alternative approach that makes it possible to obtain solutions to parametric problems in a form devoid of the specified properties. It is shown that such representations can be explored using standard algorithms, based on the Taylor formula. This form is a function smoothly approximating the solution of the original problem for any parameter values, specified in its statement. In this case, the value of the approximation error is controlled by a special parameter. Construction of proposed approximations is performed using special functions that establish feedback (within optimality conditions for the original problem) between variables and Lagrange multipliers. This method is described for linear problems with subsequent generalization to the nonlinear case.
From a computational point of view the construction of the approximation consists in finding the saddle point of the modified Lagrange function of the original problem. Moreover, this modification is performed in a special way using feedback functions. It is shown that the necessary conditions for the existence of such a saddle point are similar to the conditions of the Karush – Kuhn – Tucker theorem, but do not contain constraints such as inequalities and conditions of complementary slackness. Necessary conditions for the existence of a saddle point determine this approximation implicitly. Therefore, to calculate its differential characteristics, the implicit function theorem is used. The same theorem is used to reduce the approximation error to an acceptable level.
Features of the practical implementation feedback function method, including estimates of the rate of convergence to the exact solution are demonstrated for several specific classes of parametric optimization problems. Specifically, tasks searching for the global extremum of functions of many variables and the problem of multiple extremum (maximin-minimax) are considered. Optimization problems that arise when using multicriteria mathematical models are also considered. For each of these classes, there are demo examples.
-
Statistical distribution of the quasi-harmonic signal’s phase: basics of theory and computer simulation
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 287-297The paper presents the results of the fundamental research directed on the theoretical study and computer simulation of peculiarities of the quasi-harmonic signal’s phase statistical distribution. The quasi-harmonic signal is known to be formed as a result of the Gaussian noise impact on the initially harmonic signal. By means of the mathematical analysis the formulas have been obtained in explicit form for the principle characteristics of this distribution, namely: for the cumulative distribution function, the probability density function, the likelihood function. As a result of the conducted computer simulation the dependencies of these functions on the phase distribution parameters have been analyzed. The paper elaborates the methods of estimating the phase distribution parameters which contain the information about the initial, undistorted signal. It has been substantiated that the task of estimating the initial value of the phase of quasi-harmonic signal can be efficiently solved by averaging the results of the sampled measurements. As for solving the task of estimating the second parameter of the phase distribution, namely — the parameter, determining the signal level respectively the noise level — a maximum likelihood technique is proposed to be applied. The graphical illustrations are presented that have been obtained by means of the computer simulation of the principle characteristics of the phase distribution under the study. The existence and uniqueness of the likelihood function’s maximum allow substantiating the possibility and the efficiency of solving the task of estimating signal’s level relative to noise level by means of the maximum likelihood technique. The elaborated method of estimating the un-noised signal’s level relative to noise, i. e. the parameter characterizing the signal’s intensity on the basis of measurements of the signal’s phase is an original and principally new technique which opens perspectives of usage of the phase measurements as a tool of the stochastic data analysis. The presented investigation is meaningful for solving the task of determining the phase and the signal’s level by means of the statistical processing of the sampled phase measurements. The proposed methods of the estimation of the phase distribution’s parameters can be used at solving various scientific and technological tasks, in particular, in such areas as radio-physics, optics, radiolocation, radio-navigation, metrology.
-
Tangent search method in time optimal problem for a wheeled mobile robot
Computer Research and Modeling, 2025, v. 17, no. 3, pp. 401-421Searching optimal trajectory of motion is a complex problem that is investigated in many research studies. Most of the studies investigate methods that are applicable to such a problem in general, regardless of the model of the object. With such general approach, only numerical solution can be found. However, in some cases it is possible to find an optimal trajectory in a closed form. Current article considers a time optimal problem with state limitations for a wheeled mobile differential robot that moves on a horizontal plane. The mathematical model of motion is kinematic. The state constraints correspond to the obstacles on the plane defined as circles that need to be avoided during motion. The independent control inputs are the wheel speeds that are limited in absolute value. Such model is commonly used in problems where the transients are considered insignificant, for example, when controlling tracked or wheeled devices that move slowly, prioritizing traction power over speed. In the article it is shown that the optimal trajectory from the starting point to the finishing point in such kinematic approach is a sequence of straight segments of tangents to the obstacles and arcs of the circles that limit the obstacles. The geometrically shortest path between the start and the finish is also a sequence of straight lines and arcs, therefore the time-optimal trajectory corresponds to one of the local minima when searching for the shortest path. The article proposes a method of search for the time-optimal trajectory based on building a graph of possible trajectories, where the edges are the possible segments of the tajectory, and the vertices are the connections between them. The optimal path is sought using Dijkstra’s algorithm. The theoretical foundation of the method is given, and the results of computer investigation of the algorithm are provided.
-
Situational resource allocation: review of technologies for solving problems based on knowledge systems
Computer Research and Modeling, 2025, v. 17, no. 4, pp. 543-566The article presents updated technologies for solving two classes of linear resource allocation problems with dynamically changing characteristics of situational management systems and awareness of experts (and/or trained robots). The search for solutions is carried out in an interactive mode of computational experiment using updatable knowledge systems about problems considered as constructive objects (in accordance with the methodology of formalization of knowledge about programmable problems created in the theory of S-symbols). The technologies are focused on implementation in the form of Internet services. The first class includes resource allocation problems solved by the method of targeted solution movement. The second is the problems of allocating a single resource in hierarchical systems, taking into account the priorities of expense items, which can be solved (depending on the specified mandatory and orienting requirements for the solution) either by the interval method of allocation (with input data and result represented by numerical segments), or by the targeted solution movement method. The problem statements are determined by requirements for solutions and specifications of their applicability, which are set by an expert based on the results of the portraits of the target and achieved situations analysis. Unlike well-known methods for solving resource allocation problems as linear programming problems, the method of targeted solution movement is insensitive to small data changes and allows to find feasible solutions when the constraint system is incompatible. In single-resource allocation technologies, the segmented representation of data and results allows a more adequate (compared to a point representation) reflection of the state of system resource space and increases the practical applicability of solutions. The technologies discussed in the article are programmatically implemented and used to solve the problems of resource basement for decisions, budget design taking into account the priorities of expense items, etc. The technology of allocating a single resource is implemented in the form of an existing online cost planning service. The methodological consistency of the technologies is confirmed by the results of comparison with known technologies for solving the problems under consideration.
Keywords: linear resource allocation problems, technologies for solving situational resource allocation problems, states of system’s resource space, profiles of situations, mandatory and orienting requirements for solutions, method of targeted solution movement, interval method of allocation, theory of S-symbols. -
Control systems in Brunovsky form: symmetries, controllability
Computer Research and Modeling, 2009, v. 1, no. 2, pp. 147-159Views (last year): 2.Many nonlinear control systems by nonsingular transformation variable {condition-control} happen to canonical Brunovsky form. The different questions dare in canonical form to theories of control, then inverse change variable is realized return to source variable. In work on base this ideology are studied transformations to symmetries space {time-condition-control}.
-
Complimentary information using in the task of averaging operators inversion in function space
Computer Research and Modeling, 2011, v. 3, no. 3, pp. 241-254The dual task of integral geometry – to define for a given averaging operator the function class where inversion of that operator is possible – is solved. Those classes are defined ambiguously. Full description of those classes is given in the form of minimal complimentary information necessary to know about the function. The possible to give a constructive description of the class is researched and in the case of a finite averaging system the inversion formulas are given.
-
Computer simulation for trimming exit temperature profile from low emission combustor
Computer Research and Modeling, 2014, v. 6, no. 6, pp. 901-909It is discussed peculiarities of forming gas temperature fields in gas turbine engine low emission combustors. It is shown the influence of burn-up rate on combustor outlet temperature and proposed recommendation for design the dilution system for the combustor.
Keywords: combustor, gas turbine, temperature profile, computer simulation, burn-up rate, dilution holes.Views (last year): 3. Citations: 2 (RSCI). -
Reduction of decision rule of multivariate interpolation and approximation method in the problem of data classification
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 475-484Views (last year): 5.This article explores a method of machine learning based on the theory of random functions. One of the main problems of this method is that decision rule of a model becomes more complicated as the number of training dataset examples increases. The decision rule of the model is the most probable realization of a random function and it's represented as a polynomial with the number of terms equal to the number of training examples. In this article we will show the quick way of the number of training dataset examples reduction and, accordingly, the complexity of the decision rule. Reducing the number of examples of training dataset is due to the search and removal of weak elements that have little effect on the final form of the decision function, and noise sampling elements. For each $(x_i,y_i)$-th element sample was introduced the concept of value, which is expressed by the deviation of the estimated value of the decision function of the model at the point $x_i$, built without the $i$-th element, from the true value $y_i$. Also we show the possibility of indirect using weak elements in the process of training model without increasing the number of terms in the decision function. At the experimental part of the article, we show how changed amount of data affects to the ability of the method of generalizing in the classification task.
-
A new form of differential equations in modeling of the motion of a heavy solid
Computer Research and Modeling, 2016, v. 8, no. 6, pp. 873-884Views (last year): 6.The different types of the reduced equations are known in the dynamics a heavy rigid body with a fixed point. Since the Euler−Poisson’s equations admit the three first integrals, then for the first approach the obtaining new forms of equations are usually based on these integrals. The system of six scalar equations can be transformed to a third-order system with them. However, in indicated approach the reduced system will have a feature as in the form of radical expressions a relatively the components of the angular velocity vector. This fact prevents the effective the effective application of numerical and asymptotic methods of solutions research. In the second approach the different types of variables in a problem are used: Euler’s angles, Hamilton’s variables and other variables. In this approach the Euler−Poisson’s equations are reduced to either the system of second-order differential equations, or the system for which the special methods are effective. In the article the method of finding the reduced system based on the introduction of an auxiliary variable is applied. This variable characterizes the mixed product of the angular momentum vector, the vector of vertical and the unit vector barycentric axis of the body. The system of four differential equations, two of which are linear differential equations was obtained. This system has no analog and does not contain the features that allows to apply to it the analytical and numerical methods. Received form of equations is applied for the analysis of a special class of solutions in the case when the center of mass of the body belongs to the barycentric axis. The variant in which the sum of the squares of the two components of the angular momentum vector with respect to not barycentric axes is constant. It is proved that this variant exists only in the Steklov’s solution. The obtained form of Euler−Poisson’s equations can be used to the investigation of the conditions of existence of other classes of solutions. Certain perspectives obtained equations consists a record of all solutions for which the center of mass is on barycentric axis in the variables of this article. It allows to carry out a classification solutions of Euler−Poisson’s equations depending on the order of invariant relations. Since the equations system specified in the article has no singularities, it can be considered in computer modeling using numerical methods.
-
Traveling waves in a parabolic problem with a rotation on the circle
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 705-716Views (last year): 11. Citations: 5 (RSCI).Optical systems with two-dimensional feedback demonstrate wide possibilities for studying the nucleation and development processes of dissipative structures. Feedback allows to influence the dynamics of the optical system by controlling the transformation of spatial variables performed by prisms, lenses, dynamic holograms and other devices. A nonlinear interferometer with a mirror image of a field in two-dimensional feedback is one of the simplest optical systems in which is realized the nonlocal nature of light fields.
A mathematical model of optical systems with two-dimensional feedback is a nonlinear parabolic equation with rotation transformation of a spatial variable and periodicity conditions on a circle. Such problems are investigated: bifurcation of the traveling wave type stationary structures, how the form of the solution changes as the diffusion coefficient decreases, dynamics of the solution’s stability when the bifurcation parameter leaves the critical value. For the first time as a parameter bifurcation was taken of diffusion coefficient.
The method of central manifolds and the Galerkin’s method are used in this paper. The method of central manifolds and the Galerkin’s method are used in this paper. The method of central manifolds allows to prove a theorem on the existence and form of the traveling wave type solution neighborhood of the bifurcation value. The first traveling wave born as a result of the Andronov –Hopf bifurcation in the transition of the bifurcation parameter through the сritical value. According to the central manifold theorem, the first traveling wave is born orbitally stable.
Since the above theorem gives the opportunity to explore solutions are born only in the vicinity of the critical values of the bifurcation parameter, the decision to study the dynamics of traveling waves of change during the withdrawal of the bifurcation parameter in the supercritical region, the formalism of the Galerkin method was used. In accordance with the method of the central manifold is made Galerkin’s approximation of the problem solution. As the bifurcation parameter decreases and its transition through the critical value, the zero solution of the problem loses stability in an oscillatory manner. As a result, a periodic solution of the traveling wave type branches off from the zero solution. This wave is born orbitally stable. With further reduction of the parameter and its passage through the next critical value from the zero solution, the second solution of the traveling wave type is produced as a result of the Andronov –Hopf bifurcation. This wave is born unstable with an instability index of two.
Numerical calculations have shown that the application of the Galerkin’s method leads to correct results. The results obtained are in good agreement with the results obtained by other authors and can be used to establish experiments on the study of phenomena in optical systems with feedback.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




