All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Application of the kinetic type model for study of a spatial spread of COVID-19
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 611-627A simple model based on a kinetic-type equation is proposed to describe the spread of a virus in space through the migration of virus carriers from a certain center. The consideration is carried out on the example of three countries for which such a one-dimensional model is applicable: Russia, Italy and Chile. The geographical location of these countries and their elongation in the direction from the centers of infection (Moscow, Milan and Lombardia in general, as well as Santiago, respectively) makes it possible to use such an approximation. The aim is to determine the dynamic density of the infected in time and space. The model is two-parameter. The first parameter is the value of the average spreading rate associated with the transfer of infected moving by transport vehicles. The second parameter is the frequency of the decrease of the infected as they move through the country, which is associated with the passengers reaching their destination, as well as with quarantine measures. The parameters are determined from the actual known data for the first days of the spatial spread of the epidemic. An analytical solution is being built; simple numerical methods are also used to obtain a series of calculations. The geographical spread of the disease is a factor taken into account in the model, the second important factor is that contact infection in the field is not taken into account. Therefore, the comparison of the calculated values with the actual data in the initial period of infection coincides with the real data, then these data become higher than the model data. Those no less model calculations allow us to make some predictions. In addition to the speed of infection, a similar “speed of recovery” is possible. When such a speed is found for the majority of the country's population, a conclusion is made about the beginning of a global recovery, which coincides with real data.
-
Sensitivity analysis and semi-analytical solution for analyzing the dynamics of coffee berry disease
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 731-753Coffee berry disease (CBD), resulting from the Colletotrichum kahawae fungal pathogen, poses a severe risk to coffee crops worldwide. Focused on coffee berries, it triggers substantial economic losses in regions relying heavily on coffee cultivation. The devastating impact extends beyond agricultural losses, affecting livelihoods and trade economies. Experimental insights into coffee berry disease provide crucial information on its pathogenesis, progression, and potential mitigation strategies for control, offering valuable knowledge to safeguard the global coffee industry. In this paper, we investigated the mathematical model of coffee berry disease, with a focus on the dynamics of the coffee plant and Colletotrichum kahawae pathogen populations, categorized as susceptible, exposed, infected, pathogenic, and recovered (SEIPR) individuals. To address the system of nonlinear differential equations and obtain semi-analytical solution for the coffee berry disease model, a novel analytical approach combining the Shehu transformation, Akbari – Ganji, and Pade approximation method (SAGPM) was utilized. A comparison of analytical results with numerical simulations demonstrates that the novel SAGPM is excellent efficiency and accuracy. Furthermore, the sensitivity analysis of the coffee berry disease model examines the effects of all parameters on the basic reproduction number $R_0$. Moreover, in order to examine the behavior of the model individuals, we varied some parameters in CBD. Through this analysis, we obtained valuable insights into the responses of the coffee berry disease model under various conditions and scenarios. This research offers valuable insights into the utilization of SAGPM and sensitivity analysis for analyzing epidemiological models, providing significant utility for researchers in the field.
-
The impact of ecological mechanisms on stability in an eco-epidemiological model: Allee effect and prey refuge
Computer Research and Modeling, 2025, v. 17, no. 1, pp. 139-169Eco-epidemiological models provide insights into factors influencing disease transmission and host population stability. This study developed two eco-epidemiological models to investigate the impacts of prey refuge availability and an Allee effect on dynamics. Model A incorporated these mechanisms, while model B did not. Both models featured predator – prey and disease transmission and were analyzed mathematically and via simulation. Model equilibrium states were examined locally and globally under differing parameter combinations representative of environmental scenarios. Model A and B demonstrated globally stable conditions within certain parameter ranges, signalling refuge and Allee effect terms promote robustness. Moreover, model A showed a higher potential toward extinction of the species as a result of incorporating the Allee effect. Bifurcation analyses revealed qualitative shifts in behavior triggered by modifications like altered predation mortality. Model A manifested a transcritical bifurcation indicating critical population thresholds. Additional bifurcation types were noticed when refuge and Allee stabilizing impacts were absent in model B. Findings showed disease crowding effect and that host persistence is positively associated with refuge habitat, reducing predator – prey encounters. The Allee effect also calibrated stability via heightened sensitivity to small groups. Simulations aligned with mathematical predictions. Model A underwent bifurcations at critical predator death rates impacting prey outcomes. This work provides a valuable framework to minimize transmission given resource availability or demographic alterations, generating testable hypotheses.
-
Modeling the initial period of HIV-1 infection spread in the lymph node based on delay differential equations
Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1181-1203A mathematical model describing the dynamics of HIV-1 infection in a single lymph node during the initial period of infection development is presented. Within the framework of the model, the infection of an individual is set by a nonnegative finite function describing the rate of entry of the initial viral particles into the lymph node. The equations of the model are derived with consideration of two factors: 1) the interaction of viral particles with naive CD4+ T lymphocytes in various phases of the cell cycle; 2) contact interaction between multiplying naive CD4+ T lymphocytes and infected CD4+ T lymphocytes producing viral particles. The specific feature of intercellular contact interactions is the formation of complexes consisting of pairs of these cells. The duration of the complexes’ existence is determined by the distribution functions over finite time intervals. The model is presented as a high-dimensional system of nonlinear delay differential equations, including two equations with distributed delay, and is supplemented with non-negative initial data. In the absence of HIV-1 infection, the model is reduced to four delay differential equations describing the number of naive CD4+ T-lymphocytes in different phases of the cell cycle. The global solvability of the model (the existence and uniqueness of the solution on the semi-axis) is determined, and the non-negativity of the solution components is established. To carry out computational experiments with the model, an algorithm for numerically solving the used system of differential equations are developed based on the semi-implicit Euler scheme for the case of uniform distribution of durations of the complexes existence. The results of computational experiments aimed at approximation the numerical solution of the model to describing the kinetics of HIV-1 infection spread in its acute phase, including the eclipse phase, are presented. The variable used as the observable is the variable describing the number of viral particles per milliliter of blood on days 10–12 after the onset of acute infection. The dynamics of the observable variable is numerically studied depending on the variation of the model parameters reflecting the patterns of complex formation and the formation of cells producing viral particles. The possibility of attenuation of HIV-1 infection in the lymph node at certain values of some of the model parameters is shown.
-
Pareto optimal analysis of global warming prevention by geoengineering methods
Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1097-1108Views (last year): 1. Citations: 3 (RSCI).The study is based on a three-dimensional hydrodynamic global climate coupled model, including ocean model with real depths and continents configuration, sea ice evolution model and energy and moisture balance atmosphere model. Aerosol concentration from the year 2010 to 2100 is calculated as a controlling parameter to stabilize mean year surface air temperature. It is shown that by this way it is impossible to achieve the space and seasonal uniform approximation to the existing climate, although it is possible significantly reduce the greenhouse warming effect. Climate will be colder at 0.1–0.2 degrees in the low and mid-latitudes and at high latitudes it will be warmer at 0.2–1.2 degrees. The Pareto frontier is investigated and visualized for two parameters — atmospheric temperature mean square deviation for the winter and summer seasons. The Pareto optimal amount of sulfur emissions would be between 23.5 and 26.5 TgS/year.
-
Methodological approach to modeling and forecasting the impact of the spatial heterogeneity of the COVID-19 spread on the economic development of Russian regions
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 629-648The article deals with the development of a methodological approach to forecasting and modeling the socioeconomic consequences of viral epidemics in conditions of heterogeneous economic development of territorial systems. The relevance of the research stems from the need for rapid mechanisms of public management and stabilization of adverse epidemiological situation, taking into account the spatial heterogeneity of the spread of COVID-19, accompanied by a concentration of infection in large metropolitan areas and territories with high economic activity. The aim of the work is to substantiate a methodology to assess the spatial heterogeneity of the spread of coronavirus infection, find poles of its growth, emerging spatial clusters and zones of their influence with the assessment of inter-territorial relationships, as well as simulate the effects of worsening epidemiological situation on the dynamics of economic development of regional systems. The peculiarity of the developed approach is the spatial clustering of regional systems by the level of COVID-19 incidence, conducted using global and local spatial autocorrelation indices, various spatial weight matrices, and L.Anselin mutual influence matrix based on the statistical information of the Russian Federal State Statistics Service. The study revealed a spatial cluster characterized by high levels of infection with COVID-19 with a strong zone of influence and stable interregional relationships with surrounding regions, as well as formed growth poles which are potential poles of further spread of coronavirus infection. Regression analysis using panel data not only confirmed the impact of COVID-19 incidence on the average number of employees in enterprises, the level of average monthly nominal wages, but also allowed to form a model for scenario prediction of the consequences of the spread of coronavirus infection. The results of this study can be used to form mechanisms to contain the coronavirus infection and stabilize socio-economic at macroeconomic and regional level and restore the economy of territorial systems, depending on the depth of the spread of infection and the level of economic damage caused.
-
Technoscape: multi-agent model for evolution of network of cities, joined by production and trade links
Computer Research and Modeling, 2022, v. 14, no. 1, pp. 163-178The paper presents agent-based model for city formation named Technoscape which is both local and nonlocal. Technoscape can, to a certain degree, be also assumed as a model for emergence of global economy. The current version of the model implements very simple way of agents’ behavior and interaction, still the model provides rather interesting spatio-temporal patterns.
Locality and non-locality mean here the spatial features of the way the agents interact with each other and with geographical space upon which the evolution takes place. Technoscape agent is some conventional artisan, family, or а producing and trading firm, while there is no difference between production and trade. Agents are located upon and move through bounded two-dimensional space divided into square cells. The model demonstrates processes of agents’ concentration in a small set of cells, which is interpreted as «city» formation. Agents are immortal, they don’t mutate and evolve, though this is interesting perspective for the evolution of the model itself.
Technoscape provides some distinctively new type of self-organization. Partially, this type of selforganization resembles the behavior of segregation model by Thomas Shelling, still that model has evolution rules substantially different from Technoscape. In Shelling model there exist avalanches still simple equilibria exist if no new agents are added to the game board, while in Technoscape no such equilibria exist. At best, we can observe quasi-equilibrium, slowly changing global states.
One non-trivial phenomenon Technoscape exhibits, which also contrasts to Shelling segregation model, is the ability of agents to concentrate in local cells (interpreted as cities) even explicitly and totally ignoring local interactions, using non-local interactions only.
At the same time, while the agents tend to concentrate in large one-cell cities, large scale of such cities does not guarantee them from decay: there always exists a process of «enticement» of agents and their flow to new cities.
-
World dynamics as an object of modeling (for the fiftieth anniversary of the first report to the Club of Rome)
Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1371-1394In the last quarter of the twentieth century, the nature of global demographic and economic development began to change rapidly: the continuously accelerating growth of the main characteristics that took place over the previous two hundred years was replaced by a sharp slowdown. In the context of these changes, the role of a long-term forecast of global dynamics is increasing. At the same time, the forecast should be based not on inertial projection of past trends into future periods, but on mathematical modeling of fundamental patterns of historical development. The article presents preliminary results of research on mathematical modeling and forecasting of global demographic and economic dynamics based on this approach. The basic dynamic equations reflecting this dynamics are proposed, the modification of these equations in relation to different historical epochs is justified. For each historical epoch, based on the analysis of the corresponding system of equations, a phase portrait was determined and its features were analyzed. Based on this analysis, conclusions were drawn about the patterns of world development in the period under review.
It is shown that mathematical description of technology development is important for modeling historical dynamics. A method for describing technological dynamics is proposed, on the basis of which the corresponding mathematical equations are proposed.
Three stages of historical development are considered: the stage of agrarian society (before the beginning of the XIX century), the stage of industrial society (XIX–XX centuries) and the modern era. The proposed mathematical model shows that an agrarian society is characterized by cyclical demographic and economic dynamics, while an industrial society is characterized by an increase in demographic and economic characteristics close to hyperbolic.
The results of mathematical modeling have shown that humanity is currently moving to a fundamentally new phase of historical development. There is a slowdown in growth and the transition of human society into a new phase state, the shape of which has not yet been determined. Various options for further development are considered.
-
Dynamic regimes of the stochastic “prey – predatory” model with competition and saturation
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 515-531Views (last year): 28.We consider “predator – prey” model taking into account the competition of prey, predator for different from the prey resources, and their interaction described by the second type Holling trophic function. An analysis of the attractors is carried out depending on the coefficient of competition of predators. In the deterministic case, this model demonstrates the complex behavior associated with the local (Andronov –Hopf and saddlenode) and global (birth of a cycle from a separatrix loop) bifurcations. An important feature of this model is the disappearance of a stable cycle due to a saddle-node bifurcation. As a result of the presence of competition in both populations, parametric zones of mono- and bistability are observed. In parametric zones of bistability the system has either coexisting two equilibria or a cycle and equilibrium. Here, we investigate the geometrical arrangement of attractors and separatrices, which is the boundary of basins of attraction. Such a study is an important component in understanding of stochastic phenomena. In this model, the combination of the nonlinearity and random perturbations leads to the appearance of new phenomena with no analogues in the deterministic case, such as noise-induced transitions through the separatrix, stochastic excitability, and generation of mixed-mode oscillations. For the parametric study of these phenomena, we use the stochastic sensitivity function technique and the confidence domain method. In the bistability zones, we study the deformations of the equilibrium or oscillation regimes under stochastic perturbation. The geometric criterion for the occurrence of such qualitative changes is the intersection of confidence domains and the separatrix of the deterministic model. In the zone of monostability, we evolve the phenomena of explosive change in the size of population as well as extinction of one or both populations with minor changes in external conditions. With the help of the confidence domains method, we solve the problem of estimating the proximity of a stochastic population to dangerous boundaries, upon reaching which the coexistence of populations is destroyed and their extinction is observed.
-
Extension of Strongin’s Global Optimization Algorithm to a Function Continuous on a Compact Interval
Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1111-1119The Lipschitz continuous property has been used for a long time to solve the global optimization problem and continues to be used. Here we can mention the work of Piyavskii, Yevtushenko, Strongin, Shubert, Sergeyev, Kvasov and others. Most papers assume a priori knowledge of the Lipschitz constant, but the derivation of this constant is a separate problem. Further still, we must prove that an objective function is really Lipschitz, and it is a complicated problem too. In the case where the Lipschitz continuity is established, Strongin proposed an algorithm for global optimization of a satisfying Lipschitz condition on a compact interval function without any a priori knowledge of the Lipschitz estimate. The algorithm not only finds a global extremum, but it determines the Lipschitz estimate too. It is known that every function that satisfies the Lipchitz condition on a compact convex set is uniformly continuous, but the reverse is not always true. However, there exist models (Arutyunova, Dulliev, Zabotin) whose study requires a minimization of the continuous but definitely not Lipschitz function. One of the algorithms for solving such a problem was proposed by R. J. Vanderbei. In his work he introduced some generalization of the Lipchitz property named $\varepsilon$-Lipchitz and proved that a function defined on a compact convex set is uniformly continuous if and only if it satisfies the $\varepsilon$-Lipchitz condition. The above-mentioned property allowed him to extend Piyavskii’s method. However, Vanderbei assumed that for a given value of $\varepsilon$ it is possible to obtain an associate Lipschitz $\varepsilon$-constant, which is a very difficult problem. Thus, there is a need to construct, for a function continuous on a compact convex domain, a global optimization algorithm which works in some way like Strongin’s algorithm, i.e., without any a priori knowledge of the Lipschitz $\varepsilon$-constant. In this paper we propose an extension of Strongin’s global optimization algorithm to a function continuous on a compact interval using the $\varepsilon$-Lipchitz conception, prove its convergence and solve some numerical examples using the software that implements the developed method.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




