All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
The 3rd BRICS Mathematics Conference
Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1015-1016 -
Modeling formations of robots moving in an aquatic environment
Computer Research and Modeling, 2025, v. 17, no. 4, pp. 601-620The objective of this study is to determine the best formations for the joint movement of a group of small robots in an aquatic environment. Estimation of drag of the flow is a traditional and well-known area of research, but it is not always valid to extend the conclusions made for a single robot to a group of similar devices due to the physical effects that appear during joint movement, such as a wave shadow. For these reasons, it is necessary to study the hydrodynamic characteristics of certain robot formations as a stable structure. The hydrodynamic parameters of systems with two main types of propulsion were studied: locomotive (fishtails) and propellers. Formations similar in structure to schools of fish were mainly considered, and then their applicability for robots of different types was assessed. The relationship between the speed of movement of the group and the drag of each of its participants was also studied. Mathematical modeling of the flow around a group of robots was performed using the finite volume method using two software packages (FlowVision and OpenFoam). Robots with a screw propeller interfere with each other when packed into tight formations, and for the locomotive case, being in the disturbance zone, on the contrary, is preferable. Also, with poorly streamlined bodies, flows separating from the surface can turn into narrow turbulent jets that greatly interfere with the rear robots. It has been established that wake effect reduces energy costs only at low speeds of movement — about 5 cm/s; at high speeds, movement in columns becomes difficult for the rear robots. No large difference in frontal resistance was found between a single robot and a group for a fish-like tail. The studies made it possible to develop and substantiate recommendations for optimizing robot designs for group movement.
-
Mathematical model and heuristic methods of distributed computations organizing in the Internet of Things systems
Computer Research and Modeling, 2025, v. 17, no. 5, pp. 851-870Currently, a significant development has been observed in the direction of distributed computing theory, where computational tasks are solved collectively by resource-constrained devices. In practice, this scenario is implemented when processing data in Internet of Things systems, with the aim of reducing system latency and network infrastructure load, as data is processed on edge network computing devices. However, the rapid growth and widespread adoption of IoT systems raise questions about the need to develop methods for reducing the resource intensity of computations. The resource constraints of computing devices pose the following issues regarding the distribution of computational resources: firstly, the necessity to account for the transit cost between different devices solving various tasks; secondly, the necessity to consider the resource cost associated directly with the process of distributing computational resources, which is particularly relevant for groups of autonomous devices such as drones or robots. An analysis of modern publications available in open access demonstrated the absence of proposed models or methods for distributing computational resources that would simultaneously take into account all these factors, making the creation of a new mathematical model for organizing distributed computing in IoT systems and its solution methods topical. This article proposes a novel mathematical model for distributing computational resources along with heuristic optimization methods, providing an integrated approach to implementing distributed computing in IoT systems. A scenario is considered where there exists a leader device within a group that makes decisions concerning the allocation of computational resources, including its own, for distributed task resolution involving information exchanges. It is also assumed that no prior knowledge exists regarding which device will assume the role of leader or the migration paths of computational tasks across devices. Experimental results have shown the effectiveness of using the proposed models and heuristics: achieving up to a 52% reduction in resource costs for solving computational problems while accounting for data transit costs, saving up to 73% of resources through supplementary criteria optimizing task distribution based on minimizing fragment migrations and distances, and decreasing the resource cost of resolving the computational resource distribution problem by up to 28 times with reductions in distribution quality up to 10%.
-
Mathematical modeling of phase transitions during collective interaction of agents in a common thermal field
Computer Research and Modeling, 2025, v. 17, no. 5, pp. 1005-1028Collective behavior can serve as a mechanism of thermoregulation and play a key role in the joint survival of a group of organisms. In higher animals, such phenomena are usually the subject of study of biology since sudden transitions to collective behavior are difficult to differentiate from the psychological and social adaptation of animals. However, in this paper, we indicate several important examples when a flock of higher animals demonstrates phase transitions similar to known phenomena in liquids and gases. This issue can also be studied experimentally within the framework of synthetic systems consisting of self-propelled robots that act according to a certain given algorithm. Generalizing both of these cases, we consider the problem of phase transitions in a dense group of interacting selfpropelled agents. Within the framework of microscopic theory, we propose a mathematical model of the phenomenon, in which agents are represented as bodies interacting with each other in accordance with an effective potential of a special type, expressing the desire of agents to move in the direction of the gradient of the joint thermal field. We show that the number of agents in the group, the group power, is the control parameter of the problem. A discrete model with individual dynamics of agents reproduces most of the phenomena observed both in natural flocks of higher animals engaged in collective thermoregulation and in synthetic complex systems. A first-order phase transition is observed, which symbolizes a change in the aggregate state in a group of agents. One observes the self-assembly of the initial weakly structured mass of agents into dense quasi-crystalline structures. We demonstrate also that, with an increase in the group power, a second-order phase transition in the form of thermal convection can occur. It manifests in a sudden liquefaction of the group and a transition to vortex motion, which ensures more efficient energy consumption in the case of a synthetic system of interacting robots and the collective survival of all individuals in the case of natural animal flocks.With an increase in the group power, secondary bifurcations occur, the vortex structure in agent medium becomes more complicated.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




