All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
RDMS CMS computing: current status and plans
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 395-398Views (last year): 2.The Compact Muon Solenoid (CMS) is a high-performance general-purpose detector at the Large Hadron Collider (LHC) at CERN. More than twenty institutes from Russia and Joint Institute for Nuclear Research (JINR) are involved in Russia and Dubna Member States (RDMS) CMS Collaboration. A proper computing grid-infrastructure has been constructed at the RDMS institutes for the participation in the running phase of the CMS experiment. Current status of RDMS CMS computing and plans of its development to the next LHC start in 2015 are presented.
-
Grid based high performance computing in satellite imagery. Case study — Perona–Malik filter
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 399-406Views (last year): 3.The present paper discusses an approach to the efficient satellite image processing which involves two steps. The first step assumes the distribution of the steadily increasing volume of satellite collected data through a Grid infrastructure. The second step assumes the acceleration of the solution of the individual tasks related to image processing by implementing execution codes which make heavy use of spatial and temporal parallelism. An instance of such execution code is the image processing by means of the iterative Perona–Malik filter within FPGA application specific hardware architecture.
-
ARC Compute Element is becoming more popular in WLCG and EGI infrastructures, being used not only in the Grid context, but also as an interface to HPC and Cloud resources. It strongly relies on community contributions, which helps keeping up with the changes in the distributed computing landscape. Future ARC plans are closely linked to the needs of the LHC computing, whichever shape it may take. There are also numerous examples of ARC usage for smaller research communities through national computing infrastructure projects in different countries. As such, ARC is a viable solution for building uniform distributed computing infrastructures using a variety of resources.
-
Development of advanced intrusion detection approach using machine and ensemble learning for industrial internet of things networks
Computer Research and Modeling, 2025, v. 17, no. 5, pp. 799-827The Industrial Internet of Things (IIoT) networks plays a significant role in enhancing industrial automation systems by connecting industrial devices for real time data monitoring and predictive maintenance. However, this connectivity introduces new vulnerabilities which demand the development of advanced intrusion detection systems. The nuclear facilities are considered one of the closest examples of critical infrastructures that suffer from high vulnerability through the connectivity of IIoT networks. This paper develops a robust intrusion detection approach using machine and ensemble learning algorithms specifically determined for IIoT networks. This approach can achieve optimal performance with low time complexity suitable for real-time IIoT networks. For each algorithm, Grid Search is determined to fine-tune the hyperparameters for optimizing the performance while ensuring time computational efficiency. The proposed approach is investigated on recent IIoT intrusion detection datasets, WUSTL-IIOT-2021 and Edge-IIoT-2022 to cover a wider range of attacks with high precision and minimum false alarms. The study provides the effectiveness of ten machine and ensemble learning models on selected features of the datasets. Synthetic Minority Over-sampling Technique (SMOTE)-based multi-class balancing is used to manipulate dataset imbalances. The ensemble voting classifier is used to combine the best models with the best hyperparameters for raising their advantages to improve the performance with the least time complexity. The machine and ensemble learning algorithms are evaluated based on accuracy, precision, recall, F1 Score, and time complexity. This evaluation can discriminate the most suitable candidates for further optimization. The proposed approach is called the XCL approach that is based on Extreme Gradient Boosting (XGBoost), CatBoost (Categorical Boosting), and Light Gradient- Boosting Machine (LightGBM). It achieves high accuracy, lower false positive rate, and efficient time complexity. The results refer to the importance of ensemble strategies, algorithm selection, and hyperparameter optimization in enhancing the performance to detect the different intrusions across the IIoT datasets over the other models. The developed approach produced a higher accuracy of 99.99% on the WUSTL-IIOT-2021 dataset and 100% on the Edge-IIoTset dataset. Our experimental evaluations have been extended to the CIC-IDS-2017 dataset. These additional evaluations not only highlight the applicability of the XCL approach on a wide spectrum of intrusion detection scenarios but also confirm its scalability and effectiveness in real-world complex network environments.
-
Views (last year): 3.
Road network infrastructure is the basis of any urban area. This article compares the structural characteristics (meshedness coefficient, clustering coefficient) road networks of Moscow center (Old Moscow), formed as a result of self-organization and roads near Leninsky Prospekt (postwar Moscow), which was result of cetralized planning. Data for the construction of road networks in the form of graphs taken from the Internet resource OpenStreetMap, allowing to accurately identify the coordinates of the intersections. According to the characteristics of the calculated Moscow road networks areas the cities with road network which have a similar structure to the two Moscow areas was found in foreign publications. Using the dual representation of road networks of centers of Moscow and St. Petersburg, studied the information and cognitive features of navigation in these tourist areas of the two capitals. In the construction of the dual graph of the studied areas were not taken into account the different types of roads (unidirectional or bi-directional traffic, etc), that is built dual graphs are undirected. Since the road network in the dual representation are described by a power law distribution of vertices on the number of edges (scale-free networks), exponents of these distributions were calculated. It is shown that the information complexity of the dual graph of the center of Moscow exceeds the cognitive threshold 8.1 bits, and the same feature for the center of St. Petersburg below this threshold, because the center of St. Petersburg road network was created on the basis of planning and therefore more easy to navigate. In conclusion, using the methods of statistical mechanics (the method of calculating the partition functions) for the road network of some Russian cities the Gibbs entropy were calculated. It was found that with the road network size increasing their entropy decreases. We discuss the problem of studying the evolution of urban infrastructure networks of different nature (public transport, supply , communication networks, etc.), which allow us to more deeply explore and understand the fundamental laws of urbanization.
-
Terrain objects movement detection using SAR interferometry
Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1047-1060Views (last year): 4.To determine movements of infrastructure objects on Earth surface, SAR interferometry is used. The method is based on obtaining a series of detailed satellite images of the same Earth surface area at different times. Each image consists of the amplitude and phase components. To determine terrain movements the change of the phase component is used. A method of persistent scatterers detection and estimation of relative shift of objects corresponding to persistent scatterers is suggested.
-
Mathematical model and heuristic methods of distributed computations organizing in the Internet of Things systems
Computer Research and Modeling, 2025, v. 17, no. 5, pp. 851-870Currently, a significant development has been observed in the direction of distributed computing theory, where computational tasks are solved collectively by resource-constrained devices. In practice, this scenario is implemented when processing data in Internet of Things systems, with the aim of reducing system latency and network infrastructure load, as data is processed on edge network computing devices. However, the rapid growth and widespread adoption of IoT systems raise questions about the need to develop methods for reducing the resource intensity of computations. The resource constraints of computing devices pose the following issues regarding the distribution of computational resources: firstly, the necessity to account for the transit cost between different devices solving various tasks; secondly, the necessity to consider the resource cost associated directly with the process of distributing computational resources, which is particularly relevant for groups of autonomous devices such as drones or robots. An analysis of modern publications available in open access demonstrated the absence of proposed models or methods for distributing computational resources that would simultaneously take into account all these factors, making the creation of a new mathematical model for organizing distributed computing in IoT systems and its solution methods topical. This article proposes a novel mathematical model for distributing computational resources along with heuristic optimization methods, providing an integrated approach to implementing distributed computing in IoT systems. A scenario is considered where there exists a leader device within a group that makes decisions concerning the allocation of computational resources, including its own, for distributed task resolution involving information exchanges. It is also assumed that no prior knowledge exists regarding which device will assume the role of leader or the migration paths of computational tasks across devices. Experimental results have shown the effectiveness of using the proposed models and heuristics: achieving up to a 52% reduction in resource costs for solving computational problems while accounting for data transit costs, saving up to 73% of resources through supplementary criteria optimizing task distribution based on minimizing fragment migrations and distances, and decreasing the resource cost of resolving the computational resource distribution problem by up to 28 times with reductions in distribution quality up to 10%.
-
Specifics of public transport routing in cities of different types
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 381-394This article presents a classification of cities, taking into account their spatial planning and possible transport solutions for cities of various types. It also discusses examples of various strategies for the development of urban public transport in Russia and the European Union with a comparison of their efficiency. The article gives examples of the impact of urban planning on mobility of citizens. To implement complex strategic decisions, it is necessary to use micro and macro models which allow a comparison of situations “as is” and “as to be” to predict consequences. In addition, the authors propose a methodology to improve public transport route network and road network, which includes determining population needs in working and educational correspondences, identifying bottlenecks in the road network, developing simulation models and developing recommendations based on the simulation results, as well as the calculation of efficiency, including the calculation of a positive social effect, economic efficiency, environmental friendliness and sustainability of the urban transport system. To prove the suggested methodology, the macro and micro models of the city under study were built taking into account the spatial planning and other specifics of the city. Thus, the case study of the city of Naberezhnye Chelny shows that the use of our methodology can help to improve the situation on the roads by optimizing the bus route network and the road infrastructure. The results showed that by implementing the proposed solutions one can decrease the amount of transport load on the bottlenecks, the number of overlapping bus routes and the traffic density.
-
High-precision estimation of the spatial orientation of the video camera of the vision system of the mobile robotic complex
Computer Research and Modeling, 2025, v. 17, no. 1, pp. 93-107The efficiency of mobile robotic systems (MRS) that monitor the traffic situation, urban infrastructure, consequences of emergency situations, etc., directly depends on the quality of vision systems, which are the most important part of MRS. In turn, the accuracy of image processing in vision systems depends to a great extent on the accuracy of spatial orientation of the video camera placed on the MRS. However, when video cameras are placed on the MRS, the level of errors of their spatial orientation increases sharply, caused by wind and seismic vibrations, movement of the MRS over rough terrain, etc. In this connection, the paper considers a general solution to the problem of stochastic estimation of spatial orientation parameters of video cameras in conditions of both random mast vibrations and arbitrary character of MRS movement. Since the methods of solving this problem on the basis of satellite measurements at high intensity of natural and artificial radio interference (the methods of formation of which are constantly being improved) are not able to provide the required accuracy of the solution, the proposed approach is based on the use of autonomous means of measurement — inertial and non-inertial. But when using them, the problem of building and stochastic estimation of the general model of video camera motion arises, the complexity of which is determined by arbitrary motion of the video camera, random mast oscillations, measurement disturbances, etc. The problem of stochastic estimation of the general model of video camera motion arises. Due to the unsolved nature of this problem, the paper considers the synthesis of both the video camera motion model in the most general case and the stochastic estimation of its state parameters. The developed algorithm for joint estimation of the spatial orientation parameters of the video camera placed on the mast of the MRS is invariant to the nature of motion of the mast, the video camera, and the MRS itself, providing stability and the required accuracy of estimation under the most general assumptions about the nature of interference of the sensitive elements of the autonomous measuring complex used. The results of the numerical experiment allow us to conclude that the proposed approach can be practically applied to solve the problem of the current spatial orientation of MRS and video cameras placed on them using inexpensive autonomous measuring devices.
-
Simulation of interprocessor interactions for MPI-applications in the cloud infrastructure
Computer Research and Modeling, 2017, v. 9, no. 6, pp. 955-963Views (last year): 10. Citations: 1 (RSCI).А new cloud center of parallel computing is to be created in the Laboratory of Information Technologies (LIT) of the Joint Institute for Nuclear Research JINR) what is expected to improve significantly the efficiency of numerical calculations and expedite the receipt of new physically meaningful results due to the more rational use of computing resources. To optimize a scheme of parallel computations at a cloud environment it is necessary to test this scheme for various combinations of equipment parameters (processor speed and numbers, throughput оf а communication network etc). As a test problem, the parallel MPI algorithm for calculations of the long Josephson junctions (LDJ) is chosen. Problems of evaluating the impact of abovementioned factors of computing mean on the computing speed of the test problem are solved by simulation with the simulation program SyMSim developed in LIT.
The simulation of the LDJ calculations in the cloud environment enable users without a series of test to find the optimal number of CPUs with a certain type of network run the calculations in a real computer environment. This can save significant computational time in countable resources. The main parameters of the model were obtained from the results of the computational experiment conducted on a special cloud-based testbed. Computational experiments showed that the pure computation time decreases in inverse proportion to the number of processors, but depends significantly on network bandwidth. Comparison of results obtained empirically with the results of simulation showed that the simulation model correctly simulates the parallel calculations performed using the MPI-technology. Besides it confirms our recommendation: for fast calculations of this type it is needed to increase both, — the number of CPUs and the network throughput at the same time. The simulation results allow also to invent an empirical analytical formula expressing the dependence of calculation time by the number of processors for a fixed system configuration. The obtained formula can be applied to other similar studies, but requires additional tests to determine the values of variables.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




