Результаты поиска по 'localization':
Найдено статей: 127
  1. In this paper a fluid flow between two close located rough surfaces depending on their location and discontinuity in contact areas is investigated. The area between surfaces is considered as the porous layer with the variable permeability, depending on roughness and closure of surfaces. For obtaining closure-permeability function, the flow on the small region of surfaces (100 $\mu$m) is modeled, for which the surfaces roughness profile created by fractal function of Weierstrass – Mandelbrot. The 3D-domain for this calculation fill out the area between valleys and peaks of two surfaces, located at some distance from each other. If the surfaces get closer, a contacts between roughness peaks will appears and it leads to the local discontinuities in the domain. For the assumed surfaces closure and boundary conditions the mass flow and pressure drop is calculated and based on that, permeability of the equivalent porous layer is evaluated.The calculation results of permeability obtained for set of surfaces closure were approximated by a polynom. This allows us to calculate the actual flow parameters in a thin layer of variable thickness, the length of which is much larger than the scale of the surface roughness. As an example, showing the application of this technique, flow in the gap between the billet and conical die in 3D-formulation is modeled. In this problem the permeability of an equivalent porous layer calculated for the condition of a linear decreased gap.

  2. Dvurechensky P.E.
    A gradient method with inexact oracle for composite nonconvex optimization
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 321-334

    In this paper, we develop a new first-order method for composite nonconvex minimization problems with simple constraints and inexact oracle. The objective function is given as a sum of «hard», possibly nonconvex part, and «simple» convex part. Informally speaking, oracle inexactness means that, for the «hard» part, at any point we can approximately calculate the value of the function and construct a quadratic function, which approximately bounds this function from above. We give several examples of such inexactness: smooth nonconvex functions with inexact H¨older-continuous gradient, functions given by the auxiliary uniformly concave maximization problem, which can be solved only approximately. For the introduced class of problems, we propose a gradient-type method, which allows one to use a different proximal setup to adapt to the geometry of the feasible set, adaptively chooses controlled oracle error, allows for inexact proximal mapping. We provide a convergence rate for our method in terms of the norm of generalized gradient mapping and show that, in the case of an inexact Hölder-continuous gradient, our method is universal with respect to Hölder parameters of the problem. Finally, in a particular case, we show that the small value of the norm of generalized gradient mapping at a point means that a necessary condition of local minimum approximately holds at that point.

  3. Ainbinder R.M., Rassadin A.E.
    On population migration in an ecological niche with a spatially heterogeneous local capacity
    Computer Research and Modeling, 2025, v. 17, no. 3, pp. 483-500

    The article describes the migration process of a certain population, taking into account the spatial heterogeneity of the local capacity of the ecological niche. It is assumed that this spatial heterogeneity is caused by various natural or artificial factors. The mathematical model of the migration process under consideration is a Cauchy problem on a straight line for some quasi-linear partial differential equation of the first order, which is satisfied by the linear population density under consideration. In this paper, a general solution to this Cauchy problem is found for an arbitrary dependence of the local capacity of an ecological niche on the spatial coordinate. This general solution was applied to describe the migration of the population in question in two different cases: in the case of a dependence of the local capacity of the ecological niche on the spatial coordinate in the form of a smooth step and in the case of a hill-like dependence of the local capacity of the ecological niche on the spatial coordinate. In both cases, the solution to the Cauchy problem is expressed in terms of higher transcendental functions. By applying special relations to the model parameters, these higher transcendental functions are reduced to elementary functions, which makes it possible to obtain exact model solutions explicitly expressed in terms of elementary functions. With the help of these precise solutions, an extensive program of computational experiments has been implemented, showing how the initial population density of the Gaussian form is dispersed by the considered two types of spatial heterogeneity of the local capacity of the ecological niche. These computational experiments have shown that when passing through both step-like and hill-like spatial inhomogeneities of the local capacity of an ecological niche with a narrow Gaussian width of its initial density compared to the characteristic spatial scale of these inhomogeneities, the system forgets its initial state. In particular, if we interpret the system under study as a population living in an extended calm rectilinear river along its bed, then it can be argued that under this initial condition, after the current of this river carries the population under consideration through the area of spatial heterogeneity of the local capacity of the ecological niche, the population density becomes a quasi-rectangular function.

  4. Brazhe A.R., Brazhe N.A., Sosnovtseva O.V., Pavlov A.N., Mosekilde E., Maksimov G.V.
    Wavelet-based analysis of cell dynamics measured by interference microscopy
    Computer Research and Modeling, 2009, v. 1, no. 1, pp. 77-83

    Laser interference microscopy was used to study morphology and intracellular dynamics of erythrocytes, neurons and mast cells. We have found that changes of the local refractive index (RI) of cells have regular components that relate to the cooperative processes in the cellular submembrane and centre regions. We have shown that characteristic frequencies of RI dynamics differ for various cell types and can be used as markers of specific cellular processes.

    Views (last year): 1. Citations: 5 (RSCI).
  5. Shokirov F.S.
    Interaction of a breather with a domain wall in a two-dimensional O(3) nonlinear sigma model
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 773-787

    By numerical simulation methods the interaction processes of oscillating soliton (breather) with a 180-degree Neel domain wall in the framework of a (2 + 1)-dimensional supersymmetric O(3) nonlinear sigma model is studied. The purpose of this paper is to investigate nonlinear evolution and stability of a system of interacting localized dynamic and topological solutions. To construct the interaction models, were used a stationary breather and domain wall solutions, where obtained in the framework of the two-dimensional sine-Gordon equation by adding specially selected perturbations to the A3-field vector in the isotopic space of the Bloch sphere. In the absence of an external magnetic field, nonlinear sigma models have formal Lorentz invariance, which allows constructing, in particular, moving solutions and analyses the experimental data of the nonlinear dynamics of an interacting solitons system. In this paper, based on the obtained moving localized solutions, models for incident and head-on collisions of breathers with a domain wall are constructed, where, depending on the dynamic parameters of the system, are observed the collisions and reflections of solitons from each other, a long-range interactions and also the decay of an oscillating soliton into linear perturbation waves. In contrast to the breather solution that has the dynamics of the internal degree of freedom, the energy integral of a topologically stable soliton in the all experiments the preserved with high accuracy. For each type of interaction, the range of values of the velocity of the colliding dynamic and topological solitons is determined as a function of the rotation frequency of the A3-field vector in the isotopic space. Numerical models are constructed on the basis of methods of the theory of finite difference schemes, using the properties of stereographic projection, taking into account the group-theoretical features of constructions of the O(N) class of nonlinear sigma models of field theory. On the perimeter of the two-dimensional modeling area, specially developed boundary conditions are established that absorb linear perturbation waves radiated by interacting soliton fields. Thus, the simulation of the interaction processes of localized solutions in an infinite two-dimensional phase space is carried out. A software module has been developed that allows to carry out a complex analysis of the evolution of interacting solutions of nonlinear sigma models of field theory, taking into account it’s group properties in a two-dimensional pseudo-Euclidean space. The analysis of isospin dynamics, as well the energy density and energy integral of a system of interacting dynamic and topological solitons is carried out.

    Views (last year): 6.
  6. Ameenuddin M., Anand M.
    CFD analysis of hemodynamics in idealized abdominal aorta-renal artery junction: preliminary study to locate atherosclerotic plaque
    Computer Research and Modeling, 2019, v. 11, no. 4, pp. 695-706

    Atherosclerotic diseases such as carotid artery diseases (CAD) and chronic kidney diseases (CKD) are the major causes of death worldwide. The onset of these atherosclerotic diseases in the arteries are governed by complex blood flow dynamics and hemodynamic parameters. Atherosclerosis in renal arteries leads to reduction in arterial efficiency, which ultimately leads to Reno-vascular hypertension. This work attempts to identify the localization of atherosclerotic plaque in human abdominal aorta — renal artery junction using Computational fluid dynamics (CFD).

    The atherosclerosis prone regions in an idealized human abdominal aorta-renal artery junction are identified by calculating relevant hemodynamic indicators from computational simulations using the rheologically accurate shear-thinning Yeleswarapu model for human blood. Blood flow is numerically simulated in a 3-D model of the artery junction using ANSYS FLUENT v18.2.

    Hemodynamic indicators calculated are average wall shear stress (AWSS), oscillatory shear index (OSI), and relative residence time (RRT). Simulations of pulsatile flow (f=1.25 Hz, Re = 1000) show that low AWSS, and high OSI manifest in the regions of renal artery downstream of the junction and on the infrarenal section of the abdominal aorta lateral to the junction. High RRT, which is a relative index and dependent on AWSS and OSI, is found to overlap with the low AWSS and high OSI at the cranial surface of renal artery proximal to the junction and on the surface of the abdominal aorta lateral to the bifurcation: this indicates that these regions of the junction are prone to atherosclerosis. The results match qualitatively with the findings reported in literature and serve as initial step to illustrate utility of CFD for the location of atherosclerotic plaque.

    Views (last year): 3.
  7. Ososkov G.A., Bakina O.V., Baranov D.A., Goncharov P.V., Denisenko I.I., Zhemchugov A.S., Nefedov Y.A., Nechaevskiy A.V., Nikolskaya A.N., Shchavelev E.M., Wang L., Sun S., Zhang Y.
    Tracking on the BESIII CGEM inner detector using deep learning
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1361-1381

    The reconstruction of charged particle trajectories in tracking detectors is a key problem in the analysis of experimental data for high energy and nuclear physics.

    The amount of data in modern experiments is so large that classical tracking methods such as Kalman filter can not process them fast enough. To solve this problem, we have developed two neural network algorithms of track recognition, based on deep learning architectures, for local (track by track) and global (all tracks in an event) tracking in the GEM tracker of the BM@N experiment at JINR (Dubna). The advantage of deep neural networks is the ability to detect hidden nonlinear dependencies in data and the capability of parallel execution of underlying linear algebra operations.

    In this work we generalize these algorithms to the cylindrical GEM inner tracker of BESIII experiment. The neural network model RDGraphNet for global track finding, based on the reverse directed graph, has been successfully adapted. After training on Monte Carlo data, testing showed encouraging results: recall of 98% and precision of 86% for track finding.

    The local neural network model TrackNETv2 was also adapted to BESIII CGEM successfully. Since the tracker has only three detecting layers, an additional neuro-classifier to filter out false tracks have been introduced. Preliminary tests demonstrated the recall value at the first stage of 99%. After applying the neuro-classifier, the precision was 77% with a slight decrease of the recall to 94%. This result can be improved after the further model optimization.

  8. Minnikhanov R.N., Anikin I.V., Dagaeva M.V., Asliamov T.I., Bolshakov T.E.
    Approaches for image processing in the decision support system of the center for automated recording of administrative offenses of the road traffic
    Computer Research and Modeling, 2021, v. 13, no. 2, pp. 405-415

    We suggested some approaches for solving image processing tasks in the decision support system (DSS) of the Center for Automated Recording of Administrative Offenses of the Road Traffic (CARAO). The main task of this system is to assist the operator in obtaining accurate information about the vehicle registration plate and the vehicle brand/model based on images obtained from the photo and video recording systems. We suggested the approach for vehicle registration plate recognition and brand/model classification on the images based on modern neural network models. LPRNet neural network model supplemented by Spatial Transformer Layer was used to recognize the vehicle registration plate. The ResNeXt-101-32x8d neural network model was used to classify for vehicle brand/model. We suggested the approach to construct the training set for the neural network of vehicle registration plate recognition. The approach is based on computer vision methods and machine learning algorithms. The SIFT algorithm was used to detect and describe local features on images with the vehicle registration plate. DBSCAN clustering was used to detect and delete outliers in such local features. The accuracy of vehicle registration plate recognition was 96% on the testing set. We suggested the approach to improve the efficiency of using the ResNeXt-101-32x8d model at additional training and classification stages. The approach is based on the new architecture of convolutional neural networks with “freezing” weight coefficients of convolutional layers, an additional convolutional layer for parallelizing the classification process, and a set of binary classifiers at the output. This approach significantly reduced the time of additional training of neural network when new vehicle brand/model classification was needed. The final accuracy of vehicle brand/model classification was 99% on the testing set. The proposed approaches were tested and implemented in the DSS of the CARAO of the Republic of Tatarstan.

  9. Zimina S.V., Petrov M.N.
    Application of Random Forest to construct a local operator for flow fields refinement in external aerodynamics problems
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 761-778

    Numerical modeling of turbulent flows requires finding the balance between accuracy and computational efficiency. For example, DNS and LES models allow to obtain more accurate results, comparing to RANS models, but are more computationally expensive. Because of this, modern applied simulations are mostly performed with RANS models. But even RANS models can be computationally expensive for complex geometries or series simulations due to the necessity of resolving the boundary layer. Some methods, such as wall functions and near-wall domain decomposition, allow to significantly improve the speed of RANS simulations. However, they inevitably lose precision due to using a simplified model in the near-wall domain. To obtain a model that is both accurate and computationally efficient, it is possible to construct a surrogate model based on previously made simulations using the precise model.

    In this paper, an operator is constructed that allows reconstruction of the flow field obtained by an accurate model based on the flow field obtained by the simplified model. Spalart–Allmaras model with approximate nearwall domain decomposition and Spalart–Allmaras model resolving the near-wall region are taken as the simplified and the base models respectively. The operator is constructed using a local approach, i. e. to reconstruct a point in the flow field, only features (flow variables and their derivatives) at this point in the field are used. The operator is constructed using the Random Forest algorithm. The efficiency and accuracy of the obtained surrogate model are demonstrated on the supersonic flow over a compression corner with different values for angle $\alpha$ and Reynolds number. The investigation has been conducted into interpolation and extrapolation both by $Re$ and $\alpha$.

  10. Oleynik E.B., Ivashina N.V., Shmidt Y.D.
    Migration processes modelling: methods and tools (overview)
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1205-1232

    Migration has a significant impact on the shaping of the demographic structure of the territories population, the state of regional and local labour markets. As a rule, rapid change in the working-age population of any territory due to migration processes results in an imbalance in supply and demand on labour markets and a change in the demographic structure of the population. Migration is also to a large extent a reflection of socio-economic processes taking place in the society. Hence, the issues related to the study of migration factors, the direction, intensity and structure of migration flows, and the prediction of their magnitude are becoming topical issues these days.

    Mathematical tools are often used to analyze, predict migration processes and assess their consequences, allowing for essentially accurate modelling of migration processes for different territories on the basis of the available statistical data. In recent years, quite a number of scientific papers on modelling internal and external migration flows using mathematical methods have appeared both in Russia and in foreign countries in recent years. Consequently, there has been a need to systematize the currently most commonly used methods and tools applied in migration modelling to form a coherent picture of the main trends and research directions in this field.

    The presented review considers the main approaches to migration modelling and the main components of migration modelling methodology, i. e. stages, methods, models and model classification. Their comparative analysis was also conducted and general recommendations on the choice of mathematical tools for modelling were developed. The review contains two sections: migration modelling methods and migration models. The first section describes the main methods used in the model development process — econometric, cellular automata, system-dynamic, probabilistic, balance, optimization and cluster analysis. Based on the analysis of modern domestic and foreign publications on migration, the most common classes of models — regression, agent-based, simulation, optimization, probabilistic, balance, dynamic and combined — were identified and described. The features, advantages and disadvantages of different types of migration process models were considered.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"