Результаты поиска по 'management':
Найдено статей: 43
  1. Fokin G.A., Volgushev D.B.
    Models for spatial selection during location-aware beamforming in ultra-dense millimeter wave radio access networks
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 195-216

    The work solves the problem of establishing the dependence of the potential for spatial selection of useful and interfering signals according to the signal-to-interference ratio criterion on the positioning error of user equipment during beamforming by their location at a base station, equipped with an antenna array. Configurable simulation parameters include planar antenna array with a different number of antenna elements, movement trajectory, as well as the accuracy of user equipment location estimation using root mean square error of coordinate estimates. The model implements three algorithms for controlling the shape of the antenna radiation pattern: 1) controlling the beam direction for one maximum and one zero; 2) controlling the shape and width of the main beam; 3) adaptive beamforming. The simulation results showed, that the first algorithm is most effective, when the number of antenna array elements is no more than 5 and the positioning error is no more than 7 m, and the second algorithm is appropriate to employ, when the number of antenna array elements is more than 15 and the positioning error is more than 5 m. Adaptive beamforming is implemented using a training signal and provides optimal spatial selection of useful and interfering signals without device location data, but is characterized by high complexity of hardware implementation. Scripts of the developed models are available for verification. The results obtained can be used in the development of scientifically based recommendations for beam control in ultra-dense millimeter-wave radio access networks of the fifth and subsequent generations.

  2. Shaheen L., Rasheed B., Mazzara M.
    Tree species detection using hyperspectral and Lidar data: A novel self-supervised learning approach
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1747-1763

    Accurate tree identification is essential for ecological monitoring, biodiversity assessment, and forest management. Traditional manual survey methods are labor-intensive and ineffective over large areas. Advances in remote sensing technologies including lidar and hyperspectral imaging improve automated, exact detection in many fields.

    Nevertheless, these technologies typically require extensive labeled data and manual feature engineering, which restrict scalability. This research proposes a new method of Self-Supervised Learning (SSL) with the SimCLR framework to enhance the classification of tree species using unlabelled data. SSL model automatically discovers strong features by merging the spectral data from hyperspectral data with the structural data from LiDAR, eliminating the need for manual intervention.

    We evaluate the performance of the SSL model against traditional classifiers, including Random Forest (RF), Support Vector Machines (SVM), and Supervised Learning methods, using a dataset from the ECODSE competition, which comprises both labeled and unlabeled samples of tree species in Florida’s Ordway-Swisher Biological Station. The SSL method has been demonstrated to be significantly more effective than traditional methods, with a validation accuracy of 97.5% compared to 95.56% for Semi-SSL and 95.03% for CNN in Supervised Learning.

    Subsampling experiments showed that the SSL technique is still effective with less labeled data, with the model achieving good accuracy even with only 20% labeled data points. This conclusion demonstrates SSL’s practical applications in circumstances with insufficient labeled data, such as large-scale forest monitoring.

  3. Dmitrienko P.V.
    Methods of evaluating the effectiveness of systems for computing resources monitoring
    Computer Research and Modeling, 2012, v. 4, no. 3, pp. 661-668

    This article discusses the contribution of computing resources monitoring system to the work of a distributed computing system. Method of evaluation of this contribution and performance monitoring system based on measures of certainty the state-controlled system is proposed. The application of this methodology in the design and development of local monitoring of the Central Information and Computing Complex, Joint Institute for Nuclear Research is listed.

    Views (last year): 2. Citations: 2 (RSCI).
  4. Khavinson M.J., Losev A.S., Kulakov M.P.
    Modeling the number of employed, unemployed and economically inactive population in the Russian Far East
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 251-264

    Studies of the crisis socio-demographic situation in the Russian Far East require not only the use of traditional statistical methods, but also a conceptual analysis of possible development scenarios based on the synergy principles. The article is devoted to the analysis and modeling of the number of employed, unemployed and economically inactive population using nonlinear autonomous differential equations. We studied a basic mathematical model that takes into account the principle of pair interactions, which is a special case of the model for the struggle between conditional information of D. S. Chernavsky. The point estimates for the parameters are found using least squares method adapted for this model. The average approximation error was no more than 5.17%. The calculated parameter values correspond to the unstable focus and the oscillations with increasing amplitude of population number in the asymptotic case, which indicates a gradual increase in disparities between the employed, unemployed and economically inactive population and a collapse of their dynamics. We found that in the parametric space, not far from the inertial scenario, there are domains of blow-up and chaotic regimes complicating the ability to effectively manage. The numerical study showed that a change in only one model parameter (e.g. migration) without complex structural socio-economic changes can only delay the collapse of the dynamics in the long term or leads to the emergence of unpredictable chaotic regimes. We found an additional set of the model parameters corresponding to sustainable dynamics (stable focus) which approximates well the time series of the considered population groups. In the mathematical model, the bifurcation parameters are the outflow rate of the able-bodied population, the fertility (“rejuvenation of the population”), as well as the migration inflow rate of the unemployed. We found that the transition to stable regimes is possible with the simultaneous impact on several parameters which requires a comprehensive set of measures to consolidate the population in the Russian Far East and increase the level of income in terms of compensation for infrastructure sparseness. Further economic and sociological research is required to develop specific state policy measures.

  5. The article discusses the problem of the influence of the research goals on the structure of the multivariate model of regression analysis (in particular, on the implementation of the procedure for reducing the dimension of the model). It is shown how bringing the specification of the multiple regression model in line with the research objectives affects the choice of modeling methods. Two schemes for constructing a model are compared: the first does not allow taking into account the typology of primary predictors and the nature of their influence on the performance characteristics, the second scheme implies a stage of preliminary division of the initial predictors into groups, in accordance with the objectives of the study. Using the example of solving the problem of analyzing the causes of burnout of creative workers, the importance of the stage of qualitative analysis and systematization of a priori selected factors is shown, which is implemented not by computing means, but by attracting the knowledge and experience of specialists in the studied subject area. The presented example of the implementation of the approach to determining the specification of the regression model combines formalized mathematical and statistical procedures and the preceding stage of the classification of primary factors. The presence of this stage makes it possible to explain the scheme of managing (corrective) actions (softening the leadership style and increasing approval lead to a decrease in the manifestations of anxiety and stress, which, in turn, reduces the severity of the emotional exhaustion of the team members). Preclassification also allows avoiding the combination in one main component of controlled and uncontrolled, regulatory and controlled feature factors, which could worsen the interpretability of the synthesized predictors. On the example of a specific problem, it is shown that the selection of factors-regressors is a process that requires an individual solution. In the case under consideration, the following were consistently used: systematization of features, correlation analysis, principal component analysis, regression analysis. The first three methods made it possible to significantly reduce the dimension of the problem, which did not affect the achievement of the goal for which this task was posed: significant measures of controlling influence on the team were shown. allowing to reduce the degree of emotional burnout of its participants.

  6. Kholodkov K.I., Aleshin I.M.
    Exact calculation of a posteriori probability distribution with distributed computing systems
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 539-542

    We'd like to present a specific grid infrastructure and web application development and deployment. The purpose of infrastructure and web application is to solve particular geophysical problems that require heavy computational resources. Here we cover technology overview and connector framework internals. The connector framework links problem-specific routines with middleware in a manner that developer of application doesn't have to be aware of any particular grid software. That is, the web application built with this framework acts as an interface between the user 's web browser and Grid's (often very) own middleware.

    Our distributed computing system is built around Gridway metascheduler. The metascheduler is connected to TORQUE resource managers of virtual compute nodes that are being run atop of compute cluster utilizing the virtualization technology. Such approach offers several notable features that are unavailable to bare-metal compute clusters.

    The first application we've integrated with our framework is seismic anisotropic parameters determination by inversion of SKS and converted phases. We've used probabilistic approach to inverse problem solution based on a posteriory probability distribution function (APDF) formalism. To get the exact solution of the problem we have to compute the values of multidimensional function. Within our implementation we used brute-force APDF calculation on rectangular grid across parameter space.

    The result of computation is stored in relational DBMS and then represented in familiar human-readable form. Application provides several instruments to allow analysis of function's shape by computational results: maximum value distribution, 2D cross-sections of APDF, 2D marginals and a few other tools. During the tests we've run the application against both synthetic and observed data.

    Views (last year): 3.
  7. Gadzhiev R.I.
    Estimation of probabilistic model of employee labor process
    Computer Research and Modeling, 2012, v. 4, no. 4, pp. 969-975

    The mathematical estimation model for employee labor process, built on the basis of Bayesian network is presented in the article. The great attention is given to the estimation of qualitative characteristics of labor product. Usage of described model is supposed in the companies with the management employee workflows system.

    Views (last year): 1.
  8. Kiryanov A.K.
    GridFTP frontend with redirection for DMlite
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 543-547

    One of the most widely used storage solutions in WLCG is a Disk Pool Manager (DPM) developed and supported by SDC/ID group at CERN. Recently DPM went through a massive overhaul to address scalability and extensibility issues of the old code.

    New system was called DMLite. Unlike the old DPM that was based on daemons, DMLite is arranged as a library that can be loaded directly by an application. This approach greatly improves performance and transaction rate by avoiding unnecessary inter-process communication via network as well as threading bottlenecks.

    DMLite has a modular architecture with its core library providing only the very basic functionality. Backends (storage engines) and frontends (data access protocols) are implemented as plug-in modules. Doubtlessly DMLite wouldn't be able to completely replace DPM without GridFTP as it is used for most of the data transfers in WLCG.

    In DPM GridFTP support was implemented in a Data Storage Interface (DSI) module for Globus’ GridFTP server. In DMLite an effort was made to rewrite a GridFTP module from scratch in order to take advantage of new DMLite features and also implement new functionality. The most important improvement over the old version is a redirection capability.

    With old GridFTP frontend a client needed to contact SRM on the head node in order to obtain a transfer URL (TURL) before reading or writing a file. With new GridFTP frontend this is no longer necessary: a client may connect directly to the GridFTP server on the head node and perform file I/O using only logical file names (LFNs). Data channel is then automatically redirected to a proper disk node.

    This renders the most often used part of SRM unnecessary, simplifies file access and improves performance. It also makes DMLite a more appealing choice for non-LHC VOs that were never much interested in SRM.

    With new GridFTP frontend it's also possible to access data on various DMLite-supported backends like HDFS, S3 and legacy DPM.

    Views (last year): 1.
  9. Reed R.G., Cox M.A., Wrigley T., Mellado B.
    A CPU benchmarking characterization of ARM based processors
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 581-586

    Big science projects are producing data at ever increases rates. Typical techniques involve storing the data to disk, after minor filtering, and then processing it in large computer farms. Data production has reached a point where on-line processing is required in order to filter the data down to manageable sizes. A potential solution involves using low-cost, low-power ARM processors in large arrays to provide massive parallelisation for data stream computing (DSC). The main advantage in using System on Chips (SoCs) is inherent in its design philosophy. SoCs are primarily used in mobile devices and hence consume less power while maintaining relatively good performance. A benchmarking characterisation of three different models of ARM processors will be presented.

    Views (last year): 1.
  10. Bogdanov A.V., Thurein Kyaw L.
    Query optimization in relational database systems and cloud computing technology
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 649-655

    Optimization is the heart of relational Database Management System (DMBS). Its can analyzes the SQL statements and determines the most efficient access plan to satisfy every query request. Optimization can solves this problem and analyzes SQL statements specifying which tables and columns are available. And then request the information system and statistical data stored in the system directory, to determine the best method of solving the tasks required to comply with the query requests.

    Views (last year): 1.
Pages: « first previous next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"