Результаты поиска по 'mathematical simulation':
Найдено статей: 143
  1. Steryakov A.A.
    A universal method for constructing the simulation model of complex multi-agent systems
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 513-523

    This paper presents a universal method for constructing an agent-based model of complex systems for their further clear computer representation by means of object-oriented programming languages. The method specifies both steps of model developing from the mathematical description of the system to the determined architecture of the program simulating the system. The efficiency of the method is illustrated by the construction of the two simulation models for the complex systems of various origins: the interactive simulation of the stock exchange and space-time simulation of biological species competition.

    Views (last year): 5. Citations: 2 (RSCI).
  2. Bashashin M.V., Zemlyanay E.V., Rahmonov I.R., Shukrinov J.M., Atanasova P.C., Volokhova A.V.
    Numerical approach and parallel implementation for computer simulation of stacked long Josephson Junctions
    Computer Research and Modeling, 2016, v. 8, no. 4, pp. 593-604

    We consider a model of stacked long Josephson junctions (LJJ), which consists of alternating superconducting and dielectric layers. The model takes into account the inductive and capacitive coupling between the neighbor junctions. The model is described by a system of nonlinear partial differential equations with respect to the phase differences and the voltage of LJJ, with appropriate initial and boundary conditions. The numerical solution of this system of equations is based on the use of standard three-point finite-difference formulae for discrete approximations in the space coordinate, and the applying the four-step Runge-Kutta method for solving the Cauchy problem obtained. Designed parallel algorithm is implemented by means of the MPI technology (Message Passing Interface). In the paper, the mathematical formulation of the problem is given, numerical scheme and a method of calculation of the current-voltage characteristics of the LJJ system are described. Two variants of parallel implementation are presented. The influence of inductive and capacitive coupling between junctions on the structure of the current-voltage characteristics is demonstrated. The results of methodical calculations with various parameters of length and number of Josephson junctions in the LJJ stack depending on the number of parallel computing nodes, are presented. The calculations have been performed on multiprocessor clusters HybriLIT and CICC of Multi-Functional Information and Computing Complex (Laboratory of Information Technologies, Joint Institute for Nuclear Research, Dubna). The numerical results are discussed from the viewpoint of the effectiveness of presented approaches of the LJJ system numerical simulation in parallel. It has been shown that one of parallel algorithms provides the 9 times speedup of calculations.

    Views (last year): 7. Citations: 6 (RSCI).
  3. The paper develops a theory of a new so-called two-parametric approach to the random signals' analysis and processing. A mathematical simulation and the task solutions’ comparison have been implemented for the Gauss and Rice statistical models. The applicability of the Rice statistical model is substantiated for the tasks of data and images processing when the signal’s envelope is being analyzed. A technique is developed and theoretically substantiated for solving the task of the noise suppression and initial image reconstruction by means of joint calculation of both statistical parameters — an initial signal’s mean value and noise dispersion — based on the maximum likelihood method within the Rice distribution. The peculiarities of this distribution’s likelihood function and the following from them possibilities of the signal and noise estimation have been analyzed.

    Views (last year): 2. Citations: 4 (RSCI).
  4. Simakov S.S.
    Modern methods of mathematical modeling of blood flow using reduced order methods
    Computer Research and Modeling, 2018, v. 10, no. 5, pp. 581-604

    The study of the physiological and pathophysiological processes in the cardiovascular system is one of the important contemporary issues, which is addressed in many works. In this work, several approaches to the mathematical modelling of the blood flow are considered. They are based on the spatial order reduction and/or use a steady-state approach. Attention is paid to the discussion of the assumptions and suggestions, which are limiting the scope of such models. Some typical mathematical formulations are considered together with the brief review of their numerical implementation. In the first part, we discuss the models, which are based on the full spatial order reduction and/or use a steady-state approach. One of the most popular approaches exploits the analogy between the flow of the viscous fluid in the elastic tubes and the current in the electrical circuit. Such models can be used as an individual tool. They also used for the formulation of the boundary conditions in the models using one dimensional (1D) and three dimensional (3D) spatial coordinates. The use of the dynamical compartment models allows describing haemodynamics over an extended period (by order of tens of cardiac cycles and more). Then, the steady-state models are considered. They may use either total spatial reduction or two dimensional (2D) spatial coordinates. This approach is used for simulation the blood flow in the region of microcirculation. In the second part, we discuss the models, which are based on the spatial order reduction to the 1D coordinate. The models of this type require relatively small computational power relative to the 3D models. Within the scope of this approach, it is also possible to include all large vessels of the organism. The 1D models allow simulation of the haemodynamic parameters in every vessel, which is included in the model network. The structure and the parameters of such a network can be set according to the literature data. It also exists methods of medical data segmentation. The 1D models may be derived from the 3D Navier – Stokes equations either by asymptotic analysis or by integrating them over a volume. The major assumptions are symmetric flow and constant shape of the velocity profile over a cross-section. These assumptions are somewhat restrictive and arguable. Some of the current works paying attention to the 1D model’s validation, to the comparing different 1D models and the comparing 1D models with clinical data. The obtained results reveal acceptable accuracy. It allows concluding, that the 1D approach can be used in medical applications. 1D models allow describing several dynamical processes, such as pulse wave propagation, Korotkov’s tones. Some physiological conditions may be included in the 1D models: gravity force, muscles contraction force, regulation and autoregulation.

    Views (last year): 62. Citations: 2 (RSCI).
  5. Kholodov Y.A.
    Development of network computational models for the study of nonlinear wave processes on graphs
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 777-814

    In various applications arise problems modeled by nonlinear partial differential equations on graphs (networks, trees). In order to study such problems and various extreme situations arose in the problems of designing and optimizing networks developed the computational model based on solving the corresponding boundary problems for partial differential equations of hyperbolic type on graphs (networks, trees). As applications, three different problems were chosen solved in the framework of the general approach of network computational models. The first was modeling of traffic flow. In solving this problem, a macroscopic approach was used in which the transport flow is described by a nonlinear system of second-order hyperbolic equations. The results of numerical simulations showed that the model developed as part of the proposed approach well reproduces the real situation various sections of the Moscow transport network on significant time intervals and can also be used to select the most optimal traffic management strategy in the city. The second was modeling of data flows in computer networks. In this problem data flows of various connections in packet data network were simulated as some continuous medium flows. Conceptual and mathematical network models are proposed. The numerical simulation was carried out in comparison with the NS-2 network simulation system. The results showed that in comparison with the NS-2 packet model the developed streaming model demonstrates significant savings in computing resources while ensuring a good level of similarity and allows us to simulate the behavior of complex globally distributed IP networks. The third was simulation of the distribution of gas impurities in ventilation networks. It was developed the computational mathematical model for the propagation of finely dispersed or gas impurities in ventilation networks using the gas dynamics equations by numerical linking of regions of different sizes. The calculations shown that the model with good accuracy allows to determine the distribution of gas-dynamic parameters in the pipeline network and solve the problems of dynamic ventilation management.

  6. The paper presents the results of theoretical investigation of the peculiarities of the quasi-harmonic signal’s phase statistical distribution, while the quasi-harmonic signal is formed as a result of the Gaussian noise impact on the initially harmonic signal. The revealed features of the phase distribution became a basis for the original technique elaborated for estimating the parameters of the initial, undistorted signal. It has been shown that the task of estimation of the initial phase value can be efficiently solved by calculating the magnitude of the mathematical expectation of the results of the phase sampled measurements, while for solving the task of estimation of the second parameter — the signal level respectively to the noise level — the dependence of the phase sampled measurements variance upon the sough-for parameter is proposed to be used. For solving this task the analytical formulas having been obtained in explicit form for the moments of lower orders of the phase distribution, are applied. A new approach to quasi-harmonic signal’s parameters estimation based on the method of moments has been developed and substantiated. In particular, the application of this method ensures a high-precision measuring the amplitude characteristics of a signal by means of the phase measurements only. The numerical results obtained by means of conducted computer simulation of the elaborated technique confirm both the theoretical conclusions and the method’s efficiency. The existence and the uniqueness of the task solution by the method of moments is substantiated. It is shown that the function that describes the dependence of the phase second central moment on the sough-for parameter, is a monotonically decreasing and thus the single-valued function. The developed method may be of interest for solving a wide range of scientific and applied tasks, connected with the necessity of estimation of both the signal level and the phase value, in such areas as data processing in systems of medical diagnostic visualization, radio-signals processing, radio-physics, optics, radio-navigation and metrology.

  7. Tikhov M.S., Borodina T.S.
    Mathematical model and computer analysis of tests for homogeneity of “dose–effect” dependence
    Computer Research and Modeling, 2012, v. 4, no. 2, pp. 267-273

    The given work is devoted to the comparison of two tests for homogeneity: chi-square test based on contingency tables of 2 × 2 and test for homogeneity based on asymptotic distributions of the summarized square error of a distribution function estimators in the model of ”dose–effect” dependence. The evaluation of test power is performed by means of computer simulation. In order to design efficiency functions the method of kernel regression estimator based on Nadaray–Watson estimator is used.

    Views (last year): 6.
  8. Bondareva N.S., Gibanov N.S., Martyushev S.G., Miroshnichenko I.V., Sheremet M.A.
    Comparative analysis of finite difference method and finite volume method for unsteady natural convection and thermal radiation in a cubical cavity filled with a diathermic medium
    Computer Research and Modeling, 2017, v. 9, no. 4, pp. 567-578

    Comparative analysis of two numerical methods for simulation of unsteady natural convection and thermal surface radiation within a differentially heated cubical cavity has been carried out. The considered domain of interest had two isothermal opposite vertical faces, while other walls are adiabatic. The walls surfaces were diffuse and gray, namely, their directional spectral emissivity and absorptance do not depend on direction or wavelength but can depend on surface temperature. For the reflected radiation we had two approaches such as: 1) the reflected radiation is diffuse, namely, an intensity of the reflected radiation in any point of the surface is uniform for all directions; 2) the reflected radiation is uniform for each surface of the considered enclosure. Mathematical models formulated both in primitive variables “velocity–pressure” and in transformed variables “vector potential functions – vorticity vector” have been performed numerically using finite volume method and finite difference methods, respectively. It should be noted that radiative heat transfer has been analyzed using the net-radiation method in Poljak approach.

    Using primitive variables and finite volume method for the considered boundary-value problem we applied power-law for an approximation of convective terms and central differences for an approximation of diffusive terms. The difference motion and energy equations have been solved using iterative method of alternating directions. Definition of the pressure field associated with velocity field has been performed using SIMPLE procedure.

    Using transformed variables and finite difference method for the considered boundary-value problem we applied monotonic Samarsky scheme for convective terms and central differences for diffusive terms. Parabolic equations have been solved using locally one-dimensional Samarsky scheme. Discretization of elliptic equations for vector potential functions has been conducted using symmetric approximation of the second-order derivatives. Obtained difference equation has been solved by successive over-relaxation method. Optimal value of the relaxation parameter has been found on the basis of computational experiments.

    As a result we have found the similar distributions of velocity and temperature in the case of these two approaches for different values of Rayleigh number, that illustrates an operability of the used techniques. The efficiency of transformed variables with finite difference method for unsteady problems has been shown.

    Views (last year): 13. Citations: 1 (RSCI).
  9. Shaklein A.A., Karpov A.I., Bolkisev A.A.
    Analysis of a numerical method for studying upward flame spread over solid material
    Computer Research and Modeling, 2018, v. 10, no. 6, pp. 755-774

    Reduction of the fire hazard of polymeric materials is one of the important scientific and technical problems. Since complexity of experimental procedures associated with flame spread, establishing reacting flows theoretical basics turned out to be crucial field of modern fundamental science. In order to determine parameters of flame spread over solid combustible materials numerical modelling methods have to be improved. Large amount of physical and chemical processes taking place needed to be resolved not just separately one by one but in connection with each other in gas and solid phases.

    Upward flame spread over vertical solid combustible material is followed by unsteady eddy structures of gas flow in the vicinity of flame zone caused by thermal instability and natural convection forces accelerating hot combustion products. At every moment different amount of heat energy is transferred from hot gas-phase flame to solid material because of eddy flow structures. Therefore, satisfactory heat flux and eddy flow modelling are important to estimate flame spread rate.

    In the current study we evaluated parameters of numerical method for flame spread over solid combustible material problem taking into account coupled nature of complex interaction between gas phase, solid material and eddy flow resulted from natural convection. We studied aspects of different approximation schemes used in differential equations integration process over space and time, of fields relaxation during iterations procedure carried out inside time step, of different time step values.

    Mathematical model formulated allows to simulate flame spread over solid combustible material. Fluid dynamics is modeled by Navier – Stokes system of equations, eddy flow is described by combined turbulent model RANS–LES (DDES), turbulent combustion is resolved by modified turbulent combustion model Eddy Break-Up taking into account kinetic effects, radiation transfer is modeled by spherical harmonics method of first order approximation (P1). The equations presented are solved in OpenFOAM software.

    Views (last year): 33.
  10. The well-known evolutionary equation of mathematical physics, which in modern mathematical literature is called the Kuramoto – Sivashinsky equation, is considered. In this paper, this equation is studied in the original edition of the authors, where it was proposed, together with the homogeneous Neumann boundary conditions.

    The question of the existence and stability of local attractors formed by spatially inhomogeneous solutions of the boundary value problem under study has been studied. This issue has become particularly relevant recently in connection with the simulation of the formation of nanostructures on the surface of semiconductors under the influence of an ion flux or laser radiation. The question of the existence and stability of second-order equilibrium states has been studied in two different ways. In the first of these, the Galerkin method was used. The second approach is based on using strictly grounded methods of the theory of dynamic systems with infinite-dimensional phase space: the method of integral manifolds, the theory of normal forms, asymptotic methods.

    In the work, in general, the approach from the well-known work of D.Armbruster, D.Guckenheimer, F.Holmes is repeated, where the approach based on the application of the Galerkin method is used. The results of this analysis are substantially supplemented and developed. Using the capabilities of modern computers has helped significantly complement the analysis of this task. In particular, to find all the solutions in the fourand five-term Galerkin approximations, which for the studied boundary-value problem should be interpreted as equilibrium states of the second kind. An analysis of their stability in the sense of A. M. Lyapunov’s definition is also given.

    In this paper, we compare the results obtained using the Galerkin method with the results of a bifurcation analysis of a boundary value problem based on the use of qualitative analysis methods for infinite-dimensional dynamic systems. Comparison of two variants of results showed some limited possibilities of using the Galerkin method.

    Views (last year): 27.
Pages: next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"