All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Numerical solution of the third initial-boundary value problem for the nonstationary heat conduction equation with fractional derivatives
Computer Research and Modeling, 2024, v. 16, no. 6, pp. 1345-1360Recently, to describe various mathematical models of physical processes, fractional differential calculus has been widely used. In this regard, much attention is paid to partial differential equations of fractional order, which are a generalization of partial differential equations of integer order. In this case, various settings are possible.
Loaded differential equations in the literature are called equations containing values of a solution or its derivatives on manifolds of lower dimension than the dimension of the definitional domain of the desired function. Currently, numerical methods for solving loaded partial differential equations of integer and fractional orders are widely used, since analytical solving methods for solving are impossible. A fairly effective method for solving this kind of problem is the finite difference method, or the grid method.
We studied the initial-boundary value problem in the rectangle ¯D={(x,t):0⩽ for the loaded differential heat equation with composition fractional derivative of Riemann – Liouville and Caputo – Gerasimov and with boundary conditions of the first and third kind. We have gotten an a priori assessment in differential and difference interpretations. The obtained inequalities mean the uniqueness of the solution and the continuous dependence of the solution on the input data of the problem. A difference analogue of the composition fractional derivative of Riemann – Liouville and Caputo –Gerasimov order (2-\beta ) is obtained and a difference scheme is constructed that approximates the original problem with the order O\left(\tau +h^{2-\beta } \right). The convergence of the approximate solution to the exact one is proven at a rate equal to the order of approximation of the difference scheme.
-
A difference method for solving the convection–diffusion equation with a nonclassical boundary condition in a multidimensional domain
Computer Research and Modeling, 2022, v. 14, no. 3, pp. 559-579The paper studies a multidimensional convection-diffusion equation with variable coefficients and a nonclassical boundary condition. Two cases are considered: in the first case, the first boundary condition contains the integral of the unknown function with respect to the integration variable x_\alpha^{}, and in the second case, the integral of the unknown function with respect to the integration variable \tau, denoting the memory effect. Similar problems arise when studying the transport of impurities along the riverbed. For an approximate solution of the problem posed, a locally one-dimensional difference scheme by A.A. Samarskii with order of approximation O(h^2+\tau). In view of the fact that the equation contains the first derivative of the unknown function with respect to the spatial variable x_\alpha^{}, the wellknown method proposed by A.A. Samarskii in constructing a monotonic scheme of the second order of accuracy in h_\alpha^{} for a general parabolic type equation containing one-sided derivatives taking into account the sign of r_\alpha^{}(x,t). To increase the boundary conditions of the third kind to the second order of accuracy in h_\alpha^{}, we used the equation, on the assumption that it is also valid at the boundaries. The study of the uniqueness and stability of the solution was carried out using the method of energy inequalities. A priori estimates are obtained for the solution of the difference problem in the L_2^{}-norm, which implies the uniqueness of the solution, the continuous and uniform dependence of the solution of the difference problem on the input data, and the convergence of the solution of the locally onedimensional difference scheme to the solution of the original differential problem in the L_2^{}-norm with speed equal to the order of approximation of the difference scheme. For a two-dimensional problem, a numerical solution algorithm is constructed.
-
Numerical solution of integro-differential equations of fractional moisture transfer with the Bessel operator
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 353-373The paper considers integro-differential equations of fractional order moisture transfer with the Bessel operator. The studied equations contain the Bessel operator, two Gerasimov – Caputo fractional differentiation operators with different orders \alpha and \beta. Two types of integro-differential equations are considered: in the first case, the equation contains a non-local source, i.e. the integral of the unknown function over the integration variable x, and in the second case, the integral over the time variable τ, denoting the memory effect. Similar problems arise in the study of processes with prehistory. To solve differential problems for different ratios of \alpha and \beta, a priori estimates in differential form are obtained, from which the uniqueness and stability of the solution with respect to the right-hand side and initial data follow. For the approximate solution of the problems posed, difference schemes are constructed with the order of approximation O(h^2+\tau^2) for \alpha=\beta and O(h^2+\tau^{2-\max\{\alpha,\beta\}}) for \alpha\neq\beta. The study of the uniqueness, stability and convergence of the solution is carried out using the method of energy inequalities. A priori estimates for solutions of difference problems are obtained for different ratios of \alpha and \beta, from which the uniqueness and stability follow, as well as the convergence of the solution of the difference scheme to the solution of the original differential problem at a rate equal to the order of approximation of the difference scheme.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"