Результаты поиска по 'minimization':
Найдено статей: 90
  1. Chen J., Lobanov A.V., Rogozin A.V.
    Nonsmooth Distributed Min-Max Optimization Using the Smoothing Technique
    Computer Research and Modeling, 2023, v. 15, no. 2, pp. 469-480

    Distributed saddle point problems (SPPs) have numerous applications in optimization, matrix games and machine learning. For example, the training of generated adversarial networks is represented as a min-max optimization problem, and training regularized linear models can be reformulated as an SPP as well. This paper studies distributed nonsmooth SPPs with Lipschitz-continuous objective functions. The objective function is represented as a sum of several components that are distributed between groups of computational nodes. The nodes, or agents, exchange information through some communication network that may be centralized or decentralized. A centralized network has a universal information aggregator (a server, or master node) that directly communicates to each of the agents and therefore can coordinate the optimization process. In a decentralized network, all the nodes are equal, the server node is not present, and each agent only communicates to its immediate neighbors.

    We assume that each of the nodes locally holds its objective and can compute its value at given points, i. e. has access to zero-order oracle. Zero-order information is used when the gradient of the function is costly, not possible to compute or when the function is not differentiable. For example, in reinforcement learning one needs to generate a trajectory to evaluate the current policy. This policy evaluation process can be interpreted as the computation of the function value. We propose an approach that uses a smoothing technique, i. e., applies a first-order method to the smoothed version of the initial function. It can be shown that the stochastic gradient of the smoothed function can be viewed as a random two-point gradient approximation of the initial function. Smoothing approaches have been studied for distributed zero-order minimization, and our paper generalizes the smoothing technique on SPPs.

  2. Savchuk O.S., Alkousa M.S., Stonyakin F.S.
    On some mirror descent methods for strongly convex programming problems with Lipschitz functional constraints
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1727-1746

    The paper is devoted to one approach to constructing subgradient methods for strongly convex programming problems with several functional constraints. More precisely, the strongly convex minimization problem with several strongly convex (inequality-type) constraints is considered, and first-order optimization methods for this class of problems are proposed. The special feature of the proposed methods is the possibility of using the strong convexity parameters of the violated functional constraints at nonproductive iterations, in theoretical estimates of the quality of the produced solution by the methods. The main task, to solve the considered problem, is to propose a subgradient method with adaptive rules for selecting steps and stopping rule of the method. The key idea of the proposed methods in this paper is to combine two approaches: a scheme with switching on productive and nonproductive steps and recently proposed modifications of mirror descent for convex programming problems, allowing to ignore some of the functional constraints on nonproductive steps of the algorithms. In the paper, it was described a subgradient method with switching by productive and nonproductive steps for strongly convex programming problems in the case where the objective function and functional constraints satisfy the Lipschitz condition. An analog of the proposed subgradient method, a mirror descent scheme for problems with relatively Lipschitz and relatively strongly convex objective functions and constraints is also considered. For the proposed methods, it obtained theoretical estimates of the quality of the solution, they indicate the optimality of these methods from the point of view of lower oracle estimates. In addition, since in many problems, the operation of finding the exact subgradient vector is quite expensive, then for the class of problems under consideration, analogs of the mentioned above methods with the replacement of the usual subgradient of the objective function or functional constraints by the $\delta$-subgradient were investigated. The noted approach can save computational costs of the method by refusing to require the availability of the exact value of the subgradient at the current point. It is shown that the quality estimates of the solution change by $O(\delta)$. The results of numerical experiments illustrating the advantages of the proposed methods in comparison with some previously known ones are also presented.

  3. Ablaev S.S., Makarenko D.V., Stonyakin F.S., Alkousa M.S., Baran I.V.
    Subgradient methods for non-smooth optimization problems with some relaxation of sharp minimum
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 473-495

    Non-smooth optimization often arises in many applied problems. The issues of developing efficient computational procedures for such problems in high-dimensional spaces are very topical. First-order methods (subgradient methods) are well applicable here, but in fairly general situations they lead to low speed guarantees for large-scale problems. One of the approaches to this type of problem can be to identify a subclass of non-smooth problems that allow relatively optimistic results on the rate of convergence. For example, one of the options for additional assumptions can be the condition of a sharp minimum, proposed in the late 1960s by B. T. Polyak. In the case of the availability of information about the minimal value of the function for Lipschitz-continuous problems with a sharp minimum, it turned out to be possible to propose a subgradient method with a Polyak step-size, which guarantees a linear rate of convergence in the argument. This approach made it possible to cover a number of important applied problems (for example, the problem of projecting onto a convex compact set). However, both the condition of the availability of the minimal value of the function and the condition of a sharp minimum itself look rather restrictive. In this regard, in this paper, we propose a generalized condition for a sharp minimum, somewhat similar to the inexact oracle proposed recently by Devolder – Glineur – Nesterov. The proposed approach makes it possible to extend the class of applicability of subgradient methods with the Polyak step-size, to the situation of inexact information about the value of the minimum, as well as the unknown Lipschitz constant of the objective function. Moreover, the use of local analogs of the global characteristics of the objective function makes it possible to apply the results of this type to wider classes of problems. We show the possibility of applying the proposed approach to strongly convex nonsmooth problems, also, we make an experimental comparison with the known optimal subgradient method for such a class of problems. Moreover, there were obtained some results connected to the applicability of the proposed technique to some types of problems with convexity relaxations: the recently proposed notion of weak $\beta$-quasi-convexity and ordinary quasiconvexity. Also in the paper, we study a generalization of the described technique to the situation with the assumption that the $\delta$-subgradient of the objective function is available instead of the usual subgradient. For one of the considered methods, conditions are found under which, in practice, it is possible to escape the projection of the considered iterative sequence onto the feasible set of the problem.

  4. Rusyak I.G., Nefedov D.G.
    Solution of optimization problem of wood fuel facility location by the thermal energy cost criterion
    Computer Research and Modeling, 2012, v. 4, no. 3, pp. 651-659

    The paper contains a mathematical model for the optimal location of enterprises producing fuel from renewable wood waste for the regional distributed heating supply system. Optimization is based on total cost minimization of the end product – the thermal energy from wood fuel. A method for solving the problem is based on genetic algorithm. The paper also shows the practical results of the model by example of Udmurt Republic.

    Views (last year): 5. Citations: 2 (RSCI).
  5. Tupitsa N.K.
    On accelerated adaptive methods and their modifications for alternating minimization
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 497-515

    In the first part of the paper we present convergence analysis of AGMsDR method on a new class of functions — in general non-convex with $M$-Lipschitz-continuous gradients that satisfy Polyak – Lojasiewicz condition. Method does not need the value of $\mu^{PL}>0$ in the condition and converges linearly with a scale factor $\left(1 - \frac{\mu^{PL}}{M}\right)$. It was previously proved that method converges as $O\left(\frac1{k^2}\right)$ if a function is convex and has $M$-Lipschitz-continuous gradient and converges linearly with a~scale factor $\left(1 - \sqrt{\frac{\mu^{SC}}{M}}\right)$ if the value of strong convexity parameter $\mu^{SC}>0$ is known. The novelty is that one can save linear convergence if $\frac{\mu^{PL}}{\mu^{SC}}$ is not known, but without square root in the scale factor.

    The second part presents modification of AGMsDR method for solving problems that allow alternating minimization (Alternating AGMsDR). The similar results are proved.

    As the result, we present adaptive accelerated methods that converge as $O\left(\min\left\lbrace\frac{M}{k^2},\,\left(1-{\frac{\mu^{PL}}{M}}\right)^{(k-1)}\right\rbrace\right)$ on a class of convex functions with $M$-Lipschitz-continuous gradient that satisfy Polyak – Lojasiewicz condition. Algorithms do not need values of $M$ and $\mu^{PL}$. If Polyak – Lojasiewicz condition does not hold, the convergence is $O\left(\frac1{k^2}\right)$, but no tuning needed.

    We also consider the adaptive catalyst envelope of non-accelerated gradient methods. The envelope allows acceleration up to $O\left(\frac1{k^2}\right)$. We present numerical comparison of non-accelerated adaptive gradient descent which is accelerated using adaptive catalyst envelope with AGMsDR, Alternating AGMsDR, APDAGD (Adaptive Primal-Dual Accelerated Gradient Descent) and Sinkhorn's algorithm on the problem dual to the optimal transport problem.

    Conducted experiments show faster convergence of alternating AGMsDR in comparison with described catalyst approach and AGMsDR, despite the same asymptotic rate $O\left(\frac1{k^2}\right)$. Such behavior can be explained by linear convergence of AGMsDR method and was tested on quadratic functions. Alternating AGMsDR demonstrated better performance in comparison with AGMsDR.

  6. Stonyakin F.S., Lushko Е.A., Trеtiak I.D., Ablaev S.S.
    Subgradient methods for weakly convex problems with a sharp minimum in the case of inexact information about the function or subgradient
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1765-1778

    The problem of developing efficient numerical methods for non-convex (including non-smooth) problems is relevant due to their widespread use of such problems in applications. This paper is devoted to subgradient methods for minimizing Lipschitz $\mu$-weakly convex functions, which are not necessarily smooth. It is well known that subgradient methods have low convergence rates in high-dimensional spaces even for convex functions. However, if we consider a subclass of functions that satisfies sharp minimum condition and also use the Polyak step, we can guarantee a linear convergence rate of the subgradient method. In some cases, the values of the function or it’s subgradient may be available to the numerical method with some error. The accuracy of the solution provided by the numerical method depends on the magnitude of this error. In this paper, we investigate the behavior of the subgradient method with a Polyak step when inaccurate information about the objective function value or subgradient is used in iterations. We prove that with a specific choice of starting point, the subgradient method with some analogue of the Polyak step-size converges at a geometric progression rate on a class of $\mu$-weakly convex functions with a sharp minimum, provided that there is additive inaccuracy in the subgradient values. In the case when both the value of the function and the value of its subgradient at the current point are known with error, convergence to some neighborhood of the set of exact solutions is shown and the quality estimates of the output solution by the subgradient method with the corresponding analogue of the Polyak step are obtained. The article also proposes a subgradient method with a clipped step, and an assessment of the quality of the solution obtained by this method for the class of $\mu$-weakly convex functions with a sharp minimum is presented. Numerical experiments were conducted for the problem of low-rank matrix recovery. They showed that the efficiency of the studied algorithms may not depend on the accuracy of localization of the initial approximation within the required region, and the inaccuracy in the values of the function and subgradient may affect the number of iterations required to achieve an acceptable quality of the solution, but has almost no effect on the quality of the solution itself.

  7. Yudin N.E., Gasnikov A.V.
    Regularization and acceleration of Gauss – Newton method
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1829-1840

    We propose a family of Gauss –Newton methods for solving optimization problems and systems of nonlinear equations based on the ideas of using the upper estimate of the norm of the residual of the system of nonlinear equations and quadratic regularization. The paper presents a development of the «Three Squares Method» scheme with the addition of a momentum term to the update rule of the sought parameters in the problem to be solved. The resulting scheme has several remarkable properties. First, the paper algorithmically describes a whole parametric family of methods that minimize functionals of a special kind: compositions of the residual of a nonlinear equation and an unimodal functional. Such a functional, entirely consistent with the «gray box» paradigm in the problem description, combines a large number of solvable problems related to applications in machine learning, with the regression problems. Secondly, the obtained family of methods is described as a generalization of several forms of the Levenberg –Marquardt algorithm, allowing implementation in non-Euclidean spaces as well. The algorithm describing the parametric family of Gauss –Newton methods uses an iterative procedure that performs an inexact parametrized proximal mapping and shift using a momentum term. The paper contains a detailed analysis of the efficiency of the proposed family of Gauss – Newton methods; the derived estimates take into account the number of external iterations of the algorithm for solving the main problem, the accuracy and computational complexity of the local model representation and oracle computation. Sublinear and linear convergence conditions based on the Polak – Lojasiewicz inequality are derived for the family of methods. In both observed convergence regimes, the Lipschitz property of the residual of the nonlinear system of equations is locally assumed. In addition to the theoretical analysis of the scheme, the paper studies the issues of its practical implementation. In particular, in the experiments conducted for the suboptimal step, the schemes of effective calculation of the approximation of the best step are given, which makes it possible to improve the convergence of the method in practice in comparison with the original «Three Square Method». The proposed scheme combines several existing and frequently used in practice modifications of the Gauss –Newton method, in addition, the paper proposes a monotone momentum modification of the family of developed methods, which does not slow down the search for a solution in the worst case and demonstrates in practice an improvement in the convergence of the method.

  8. Sukhoroslov O.V., Rubtsov A.O., Volkov S.Yu.
    Development of distributed computing applications and services with Everest cloud platform
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 593-599

    The use of service-oriented approach in scientific domains can increase research productivity by enabling sharing, publication and reuse of computing applications, as well as automation of scientific workflows. Everest is a cloud platform that enables researchers with minimal skills to publish and use scientific applications as services. In contrast to existing solutions, Everest executes applications on external resources attached by users, implements flexible binding of resources to applications and supports programmatic access to the platform's functionality. The paper presents current state of the platform, recent developments and remaining challenges.

    Views (last year): 6. Citations: 2 (RSCI).
  9. Degtyarev A.B., Myo Min S., Wunna K.
    Cloud computing for virtual testbed
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 753-758

    Nowadays cloud computing is an important topic in the field of information technology and computer system. Several companies and educational institutes have deployed cloud infrastructures to overcome their problems such as easy data access, software updates with minimal cost, large or unlimited storage, efficient cost factor, backup storage and disaster recovery, and some other benefits if compare with the traditional network infrastructures. The paper present the study of cloud computing technology for marine environmental data and processing. Cloud computing of marine environment information is proposed for the integration and sharing of marine information resources. It is highly desirable to perform empirical requiring numerous interactions with web servers and transfers of very large archival data files without affecting operational information system infrastructure. In this paper, we consider the cloud computing for virtual testbed to minimize the cost. That is related to real time infrastructure.

    Views (last year): 7.
  10. Ershov N.M.
    Non-uniform cellular genetic algorithms
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 775-780

    In this paper, we introduce the concept of non-uniform cellular genetic algorithm, in which a number of parameters that affect the operation of genetic operators is dependent on the location of the cells of a given cellular space. The results of numerical comparison of non-uniform cellular genetic algorithms with the standard genetic algorithms, showing the advantages of the proposed approach while minimizing multimodal functions with a large number of local extrema, are presented. The coarse-grained parallel implementation of the non-uniform algorithms using the technology of MPI is considered.

    Views (last year): 9. Citations: 3 (RSCI).
Pages: « first previous

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"