Результаты поиска по 'model identification':
Найдено статей: 39
  1. Suvorov N.V., Shleymovich M.P.
    Mathematical model of the biometric iris recognition system
    Computer Research and Modeling, 2020, v. 12, no. 3, pp. 629-639

    Automatic recognition of personal identity by biometric features is based on unique peculiarities or characteristics of people. Biometric identification process consist in making of reference templates and comparison with new input data. Iris pattern recognition algorithms presents high accuracy and low identification errors percent on practice. Iris pattern advantages over other biometric features are determined by its high degree of freedom (nearly 249), excessive density of unique features and constancy. High recognition reliability level is very important because it provides search in big databases. Unlike one-to-one check mode that is applicable only to small calculation count it allows to work in one-to-many identification mode. Every biometric identification system appears to be probabilistic and qualitative characteristics description utilizes such parameters as: recognition accuracy, false acceptance rate and false rejection rate. These characteristics allows to compare identity recognition methods and asses the system performance under any circumstances. This article explains the mathematical model of iris pattern biometric identification and its characteristics. Besides, there are analyzed results of comparison of model and real recognition process. To make such analysis there was carried out the review of existing iris pattern recognition methods based on different unique features vector. The Python-based software package is described below. It builds-up probabilistic distributions and generates large test data sets. Such data sets can be also used to educate the identification decision making neural network. Furthermore, synergy algorithm of several iris pattern identification methods was suggested to increase qualitative characteristics of system in comparison with the use of each method separately.

  2. Grebenkin I.V., Alekseenko A.E., Gaivoronskiy N.A., Ignatov M.G., Kazennov A.M., Kozakov D.V., Kulagin A.P., Kholodov Y.A.
    Ensemble building and statistical mechanics methods for MHC-peptide binding prediction
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1383-1395

    The proteins of the Major Histocompatibility Complex (MHC) play a key role in the functioning of the adaptive immune system, and the identification of peptides that bind to them is an important step in the development of vaccines and understanding the mechanisms of autoimmune diseases. Today, there are a number of methods for predicting the binding of a particular MHC allele to a peptide. One of the best such methods is NetMHCpan-4.0, which is based on an ensemble of artificial neural networks. This paper presents a methodology for qualitatively improving the underlying neural network underlying NetMHCpan-4.0. The proposed method uses the ensemble construction technique and adds as input an estimate of the Potts model taken from static mechanics, which is a generalization of the Ising model. In the general case, the model reflects the interaction of spins in the crystal lattice. Within the framework of the proposed method, the model is used to better represent the physical nature of the interaction of proteins included in the complex. To assess the interaction of the MHC + peptide complex, we use a two-dimensional Potts model with 20 states (corresponding to basic amino acids). Solving the inverse problem using data on experimentally confirmed interacting pairs, we obtain the values of the parameters of the Potts model, which we then use to evaluate a new pair of MHC + peptide, and supplement this value with the input data of the neural network. This approach, combined with the ensemble construction technique, allows for improved prediction accuracy, in terms of the positive predictive value (PPV) metric, compared to the baseline model.

  3. Lukianchenko P.P., Danilov A.M., Bugaev A.S., Gorbunov E.I., Pashkov R.A., Ilyina P.G., Gadzhimirzayev Sh.M.
    Approach to Estimating the Dynamics of the Industry Consolidation Level
    Computer Research and Modeling, 2023, v. 15, no. 1, pp. 129-140

    In this article we propose a new approach to the analysis of econometric industry parameters for the industry consolidation level. The research is based on the simple industry automatic control model. The state of the industry is measured by quarterly obtained econometric parameters from each industry’s company provided by the tax control regulator. An approach to analysis of the industry, which does not provide for tracking the economy of each company, but explores the parameters of the set of all companies as a whole, is proposed. Quarterly obtained econometric parameters from each industry’s company are Income, Quantity of employers, Taxes, and Income from Software Licenses. The ABC analysis method was modified by ABCD analysis (D — companies with zero-level impact to industry metrics) and used to make the results obtained for different indicators comparable. Pareto charts were formed for the set of econometric indicators.

    To estimate the industry monopolization, the Herfindahl – Hirschman index was calculated for the most sensitive companies metrics. Using the HHI approach, it was proved that COVID-19 does not lead to changes in the monopolization of the Russian IT industry.

    As the most visually obvious approach to the industry visualization, scattering diagrams in combination with the Pareto graph colors were proposed. The affect of the accreditation procedure is clearly observed by scattering diagram in combination with red/black dots for accredited and nonaccredited companies respectively.

    The last reported result is the proposal to use the Licenses End-to-End Product Identification as the market structure control instrument. It is the basis to avoid the multiple accounting of the licenses reselling within the chain of software distribution.

    The results of research could be the basis for future IT industry analysis and simulation on the agent based approach.

  4. Popov D.I.
    Calibration of an elastostatic manipulator model using AI-based design of experiment
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1535-1553

    This paper demonstrates the advantages of using artificial intelligence algorithms for the design of experiment theory, which makes possible to improve the accuracy of parameter identification for an elastostatic robot model. Design of experiment for a robot consists of the optimal configuration-external force pairs for the identification algorithms and can be described by several main stages. At the first stage, an elastostatic model of the robot is created, taking into account all possible mechanical compliances. The second stage selects the objective function, which can be represented by both classical optimality criteria and criteria defined by the desired application of the robot. At the third stage the optimal measurement configurations are found using numerical optimization. The fourth stage measures the position of the robot body in the obtained configurations under the influence of an external force. At the last, fifth stage, the elastostatic parameters of the manipulator are identified based on the measured data.

    The objective function required to finding the optimal configurations for industrial robot calibration is constrained by mechanical limits both on the part of the possible angles of rotation of the robot’s joints and on the part of the possible applied forces. The solution of this multidimensional and constrained problem is not simple, therefore it is proposed to use approaches based on artificial intelligence. To find the minimum of the objective function, the following methods, also sometimes called heuristics, were used: genetic algorithms, particle swarm optimization, simulated annealing algorithm, etc. The obtained results were analyzed in terms of the time required to obtain the configurations, the optimal value, as well as the final accuracy after applying the calibration. The comparison showed the advantages of the considered optimization techniques based on artificial intelligence over the classical methods of finding the optimal value. The results of this work allow us to reduce the time spent on calibration and increase the positioning accuracy of the robot’s end-effector after calibration for contact operations with high loads, such as machining and incremental forming.

  5. Qaisrani S.N., Khattak A., Zubair Asghar M., Kuleev R., Imbugva G.
    Efficient diagnosis of cardiovascular disease using composite deep learning and explainable AI technique
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1651-1666

    During the last several decades, cardiovascular disease has surpassed all others as the leading cause of mortality in both high-income and low-income countries. The mortality rate from heart disorders may be lowered with early identification and close clinical monitoring. However, it is not feasible to adequately monitor patients every day, and 24-hour consultation with a doctor is not a feasible option, since it requires more sagacity, time, and knowledge than is currently available.

    In this study, we examine the Explainable Artificial Intelligence (XAI) technique, namely, the SHAP interpretability approach, in order to educate the medical professionals about the Explainable AI (XAI) methods that can be helpful in healthcare. The XAI methods enhance the trust and understandability of both practitioners and Health Researchers in AI Models. In this work, we propose a composite Deep Learning model: Bi-LSTM+CNN model to effectively predict heart disease from patient data. After balancing the dataset, the Bi-LSTM+CNN model was used. In contrast to other studies, our proposed hybrid deep learning model produced excellent experimental results, including 99.05% accuracy, 99% precision, 99% recall, and 99% F1-score.

  6. Okhapkin V.P.
    Optimal control of the commercial bank investment including the reinvestment processes
    Computer Research and Modeling, 2014, v. 6, no. 2, pp. 309-319

    Article is devoted to the creation of a mathematical control of the bank investment process. The whole process of building optimal control may be divided into two components: in the first place, there is the identification of the functions describing the liquid capital movement in the bank and, in the second place, the use of these functions in the scheme of dynamic programming. Before this problem was discussed in the article "Optimal control of the bank investment as a factor of economic stability" in the 4th issue for 2012. In the present article considers this modification of the solution, in particular, we use ℜ(φ) as a function of reinvestment, where φ is inflow of liquid capital realized at the previous step of control.

    Views (last year): 6. Citations: 1 (RSCI).
  7. Chernov I.A.
    High-throughput identification of hydride phase-change kinetics models
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 171-183

    Metal hydrides are an interesting class of chemical compounds that can reversibly bind a large amount of hydrogen and are, therefore, of interest for energy applications. Understanding the factors affecting the kinetics of hydride formation and decomposition is especially important. Features of the material, experimental setup and conditions affect the mathematical description of the processes, which can undergo significant changes during the processing of experimental data. The article proposes a general approach to numerical modeling of the formation and decomposition of metal hydrides and solving inverse problems of estimating material parameters from measurement data. The models are divided into two classes: diffusive ones, that take into account the gradient of hydrogen concentration in the metal lattice, and models with fast diffusion. The former are more complex and take the form of non-classical boundary value problems of parabolic type. A rather general approach to the grid solution of such problems is described. The second ones are solved relatively simply, but can change greatly when model assumptions change. Our experience in processing experimental data shows that a flexible software tool is needed; a tool that allows, on the one hand, building models from standard blocks, freely changing them if necessary, and, on the other hand, avoiding the implementation of routine algorithms. It also should be adapted for high-performance systems of different paradigms. These conditions are satisfied by the HIMICOS library presented in the paper, which has been tested on a large number of experimental data. It allows simulating the kinetics of formation and decomposition of metal hydrides, as well as related tasks, at three levels of abstraction. At the low level, the user defines the interface procedures, such as calculating the time layer based on the previous layer or the entire history, calculating the observed value and the independent variable from the task variables, comparing the curve with the reference. Special algorithms can be used for solving quite general parabolic-type boundary value problems with free boundaries and with various quasilinear (i.e., linear with respect to the derivative only) boundary conditions, as well as calculating the distance between the curves in different metric spaces and with different normalization. This is the middle level of abstraction. At the high level, it is enough to choose a ready tested model for a particular material and modify it in relation to the experimental conditions.

  8. Kalitin K.Y., Nevzorov A.A., Spasov A.A., Mukha O.Y.
    Deep learning analysis of intracranial EEG for recognizing drug effects and mechanisms of action
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 755-772

    Predicting novel drug properties is fundamental to polypharmacology, repositioning, and the study of biologically active substances during the preclinical phase. The use of machine learning, including deep learning methods, for the identification of drug – target interactions has gained increasing popularity in recent years.

    The objective of this study was to develop a method for recognizing psychotropic effects and drug mechanisms of action (drug – target interactions) based on an analysis of the bioelectrical activity of the brain using artificial intelligence technologies.

    Intracranial electroencephalographic (EEG) signals from rats were recorded (4 channels at a sampling frequency of 500 Hz) after the administration of psychotropic drugs (gabapentin, diazepam, carbamazepine, pregabalin, eslicarbazepine, phenazepam, arecoline, pentylenetetrazole, picrotoxin, pilocarpine, chloral hydrate). The signals were divided into 2-second epochs, then converted into $2000\times 4$ images and input into an autoencoder. The output of the bottleneck layer was subjected to classification and clustering using t-SNE, and then the distances between resulting clusters were calculated. As an alternative, an approach based on feature extraction with dimensionality reduction using principal component analysis and kernel support vector machine (kSVM) classification was used. Models were validated using 5-fold cross-validation.

    The classification accuracy obtained for 11 drugs during cross-validation was $0.580 \pm 0.021$, which is significantly higher than the accuracy of the random classifier $(0.091 \pm 0.045, p < 0.0001)$ and the kSVM $(0.441 \pm 0.035, p < 0.05)$. t-SNE maps were generated from the bottleneck parameters of intracranial EEG signals. The relative proximity of the signal clusters in the parametric space was assessed.

    The present study introduces an original method for biopotential-mediated prediction of effects and mechanism of action (drug – target interaction). This method employs convolutional neural networks in conjunction with a modified selective parameter reduction algorithm. Post-treatment EEGs were compressed into a unified parameter space. Using a neural network classifier and clustering, we were able to recognize the patterns of neuronal response to the administration of various psychotropic drugs.

  9. Korolev S.A., Maykov D.V.
    Identification of a mathematical model and research of the various modes of methanogenesis in mesophilic environments
    Computer Research and Modeling, 2012, v. 4, no. 1, pp. 131-141

    A mathematical model for the production of biogas from animal waste was developed. An algorithm for identification of model parameters was developed. The accuracy of model identification was performed. The result of simulation for batch and continuous modes of supply of substrate was shown. The optimum flow rate of the substrate for continuous operation was found.

    Views (last year): 10. Citations: 10 (RSCI).
  10. Giricheva E.E., Abakumov A.I.
    Spatiotemporal dynamics and the principle of competitive exclusion in community
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 815-824

    Execution or violation of the principle of competitive exclusion in communities is the subject of many studies. The principle of competitive exclusion means that coexistence of species in community is impossible if the number of species exceeds the number of controlling mutually independent factors. At that time there are many examples displaying the violations of this principle in the natural systems. The explanations for this paradox vary from inexact identification of the set of factors to various types of spatial and temporal heterogeneities. One of the factors breaking the principle of competitive exclusion is intraspecific competition. This study holds the model of community with two species and one influencing factor with density-dependent mortality and spatial heterogeneity. For such models possibility of the existence of stable equilibrium is proved in case of spatial homogeneity and negative effect of the species on the factor. Our purpose is analysis of possible variants of dynamics of the system with spatial heterogeneity under the various directions of the species effect on the influencing factor. Numerical analysis showed that there is stable coexistence of the species agreed with homogenous spatial distributions of the species if the species effects on the influencing factor are negative. Density-dependent mortality and spatial heterogeneity lead to violation of the principle of competitive exclusion when equilibriums are Turing unstable. In this case stable spatial heterogeneous patterns can arise. It is shown that Turing instability is possible if at least one of the species effects is positive. Model nonlinearity and spatial heterogeneity cause violation of the principle of competitive exclusion in terms of both stable spatial homogenous states and quasistable spatial heterogeneous patterns.

    Views (last year): 11.
Pages: « first previous next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"