All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Approaches for image processing in the decision support system of the center for automated recording of administrative offenses of the road traffic
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 405-415We suggested some approaches for solving image processing tasks in the decision support system (DSS) of the Center for Automated Recording of Administrative Offenses of the Road Traffic (CARAO). The main task of this system is to assist the operator in obtaining accurate information about the vehicle registration plate and the vehicle brand/model based on images obtained from the photo and video recording systems. We suggested the approach for vehicle registration plate recognition and brand/model classification on the images based on modern neural network models. LPRNet neural network model supplemented by Spatial Transformer Layer was used to recognize the vehicle registration plate. The ResNeXt-101-32x8d neural network model was used to classify for vehicle brand/model. We suggested the approach to construct the training set for the neural network of vehicle registration plate recognition. The approach is based on computer vision methods and machine learning algorithms. The SIFT algorithm was used to detect and describe local features on images with the vehicle registration plate. DBSCAN clustering was used to detect and delete outliers in such local features. The accuracy of vehicle registration plate recognition was 96% on the testing set. We suggested the approach to improve the efficiency of using the ResNeXt-101-32x8d model at additional training and classification stages. The approach is based on the new architecture of convolutional neural networks with “freezing” weight coefficients of convolutional layers, an additional convolutional layer for parallelizing the classification process, and a set of binary classifiers at the output. This approach significantly reduced the time of additional training of neural network when new vehicle brand/model classification was needed. The final accuracy of vehicle brand/model classification was 99% on the testing set. The proposed approaches were tested and implemented in the DSS of the CARAO of the Republic of Tatarstan.
-
Repressilator with time-delayed gene expression. Part II. Stochastic description
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 587-609The repressilator is the first genetic regulatory network in synthetic biology, which was artificially constructed in 2000. It is a closed network of three genetic elements $lacI$, $\lambda cI$ and $tetR$, which have a natural origin, but are not found in nature in such a combination. The promoter of each of the three genes controls the next cistron via the negative feedback, suppressing the expression of the neighboring gene. In our previous paper [Bratsun et al., 2018], we proposed a mathematical model of a delayed repressillator and studied its properties within the framework of a deterministic description. We assume that delay can be both natural, i.e. arises during the transcription / translation of genes due to the multistage nature of these processes, and artificial, i.e. specially to be introduced into the work of the regulatory network using gene engineering technologies. In this work, we apply the stochastic description of dynamic processes in a delayed repressilator, which is an important addition to deterministic analysis due to the small number of molecules involved in gene regulation. The stochastic study is carried out numerically using the Gillespie algorithm, which is modified for time delay systems. We present the description of the algorithm, its software implementation, and the results of benchmark simulations for a onegene delayed autorepressor. When studying the behavior of a repressilator, we show that a stochastic description in a number of cases gives new information about the behavior of a system, which does not reduce to deterministic dynamics even when averaged over a large number of realizations. We show that in the subcritical range of parameters, where deterministic analysis predicts the absolute stability of the system, quasi-regular oscillations may be excited due to the nonlinear interaction of noise and delay. Earlier, we have discovered within the framework of the deterministic description, that there exists a long-lived transient regime, which is represented in the phase space by a slow manifold. This mode reflects the process of long-term synchronization of protein pulsations in the work of the repressilator genes. In this work, we show that the transition to the cooperative mode of gene operation occurs a two order of magnitude faster, when the effect of the intrinsic noise is taken into account. We have obtained the probability distribution of moment when the phase trajectory leaves the slow manifold and have determined the most probable time for such a transition. The influence of the intrinsic noise of chemical reactions on the dynamic properties of the repressilator is discussed.
-
Model for building of the radio environment map for cognitive communication system based on LTE
Computer Research and Modeling, 2022, v. 14, no. 1, pp. 127-146The paper is devoted to the secondary use of spectrum in telecommunication networks. It is emphasized that one of the solutions to this problem is the use of cognitive radio technologies and dynamic spectrum access for the successful functioning of which a large amount of information is required, including the parameters of base stations and network subscribers. Storage and processing of information should be carried out using a radio environment map, which is a spatio-temporal database of all activity in the network and allows you to determine the frequencies available for use at a given time. The paper presents a two-level model for forming a map of the radio environment of a cellular communication system LTE, in which the local and global levels are highlighted, which is described by the following parameters: a set of frequencies, signal attenuation, signal propagation map, grid step, current time count. The key objects of the model are the base station and the subscriber unit. The main parameters of the base station include: name, identifier, cell coordinates, range number, radiation power, numbers of connected subscriber devices, dedicated resource blocks. For subscriber devices, the following parameters are used: name, identifier, location, current coordinates of the device cell, base station identifier, frequency range, numbers of resource blocks for communication with the station, radiation power, data transmission status, list of numbers of the nearest stations, schedules movement and communication sessions of devices. An algorithm for the implementation of the model is presented, taking into account the scenarios of movement and communication sessions of subscriber devices. A method for calculating a map of the radio environment at a point on a coordinate grid, taking into account losses during the propagation of radio signals from emitting devices, is presented. The software implementation of the model is performed using the MatLab package. The approaches are described that allow to increase the speed of its work. In the simulation, the choice of parameters was carried out taking into account the data of the existing communication systems and the economy of computing resources. The experimental results of the algorithm for the formation of a radio environment map are demonstrated, confirming the correctness of the developed model.
-
Proof of the connection between the Backman model with degenerate cost functions and the model of stable dynamics
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 335-342Since 1950s the field of city transport modelling has progressed rapidly. The first equilibrium distribution models of traffic flow appeared. The most popular model (which is still being widely used) was the Beckmann model, based on the two Wardrop principles. The core of the model could be briefly described as the search for the Nash equilibrium in a population demand game, in which losses of agents (drivers) are calculated based on the chosen path and demands of this path with correspondences being fixed. The demands (costs) of a path are calculated as the sum of the demands of different path segments (graph edges), that are included in the path. The costs of an edge (edge travel time) are determined by the amount of traffic on this edge (more traffic means larger travel time). The flow on a graph edge is determined by the sum of flows over all paths passing through the given edge. Thus, the cost of traveling along a path is determined not only by the choice of the path, but also by the paths other drivers have chosen. Thus, it is a standard game theory task. The way cost functions are constructed allows us to narrow the search for equilibrium to solving an optimization problem (game is potential in this case). If the cost functions are monotone and non-decreasing, the optimization problem is convex. Actually, different assumptions about the cost functions form different models. The most popular model is based on the BPR cost function. Such functions are massively used in calculations of real cities. However, in the beginning of the XXI century, Yu. E. Nesterov and A. de Palma showed that Beckmann-type models have serious weak points. Those could be fixed using the stable dynamics model, as it was called by the authors. The search for equilibrium here could be also reduced to an optimization problem, moreover, the problem of linear programming. In 2013, A.V.Gasnikov discovered that the stable dynamics model can be obtained by a passage to the limit in the Beckmann model. However, it was made only for several practically important, but still special cases. Generally, the question if this passage to the limit is possible remains open. In this paper, we provide the justification of the possibility of the above-mentioned passage to the limit in the general case, when the cost function for traveling along the edge as a function of the flow along the edge degenerates into a function equal to fixed costs until the capacity is reached and it is equal to plus infinity when the capacity is exceeded.
-
Special action and counter-terrorism models
Computer Research and Modeling, 2024, v. 16, no. 6, pp. 1467-1498Special actions (guerrilla, anti-guerrilla, reconnaissance and sabotage, subversive, counter-terrorist, counter-sabotage, etc.) are organized and conducted by law enforcement and armed forces and are aimed at protecting citizens and ensuring national security. Since the early 2000s, the problems of special actions have attracted the attention of specialists in the field of modeling, sociologists, physicists and representatives of other sciences. This article reviews and characterizes the works in the field of modeling special actions and counterterrorism. The works are classified by modeling methods (descriptive, optimization and game-theoretic), by types and stages of actions, and by phases of management (preparation and conduct of activities). The second section presents a classification of methods and models for special actions and counterterrorism, and gives a brief overview of descriptive models. The method of geographic profiling, network games, models of dynamics of special actions, the function of victory in combat and special actions (the dependence of the probability of victory on the correlation of forces and means of the parties) are considered. The third section considers the “attacker – defender” game and its extensions: the Stackelberg game and the Stackelberg security game, as well as issues of their application in security tasks In the “attacker – defender” game and security games, known works are classified on the following grounds: the sequence of moves, the number of players and their target functions, the time horizon of the game, the degree of rationality of the players and their attitude to risk, the degree of awareness of the players. The fourth section is devoted to the description of patrolling games on a graph with discrete time and simultaneous choice by the parties of their actions (Nash equilibrium is computed to find optimal strategies). The fifth section deals with game-theoretic models of transportation security as applications of Stackelberg security games. The last section is devoted to the review and characterization of a number of models of border security in two phases of management: preparation and conduct of activities. An example of effective interaction between Coast Guard units and university researchers is considered. Promising directions for further research are the following: first, modeling of counter-terrorist and special operations to neutralize terrorist and sabotage groups with the involvement of multidepartmental and heterogeneous forces and means, second, complexification of models by levels and stages of activity cycles, third, development of game-theoretic models of combating maritime terrorism and piracy.
-
Research on the achievability of a goal in a medical quest
Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1149-1179The work presents an experimental study of the tree structure that occurs during a medical examination. At each meeting with a medical specialist, the patient receives a certain number of areas for consulting other specialists or for tests. A tree of directions arises, each branch of which the patient should pass. Depending on the branching of the tree, it can be as final — and in this case the examination can be completed — and endless when the patient’s goal cannot be achieved. In the work both experimentally and theoretically studied the critical properties of the transition of the system from the forest of the final trees to the forest endless, depending on the probabilistic characteristics of the tree.
For the description, a model is proposed in which a discrete function of the probability of the number of branches on the node repeats the dynamics of a continuous gaussian distribution. The characteristics of the distribution of the Gauss (mathematical expectation of $x_0$, the average quadratic deviation of $\sigma$) are model parameters. In the selected setting, the task refers to the problems of branching random processes (BRP) in the heterogeneous model of Galton – Watson.
Experimental study is carried out by numerical modeling on the final grilles. A phase diagram was built, the boundaries of areas of various phases are determined. A comparison was made with the phase diagram obtained from theoretical criteria for macrosystems, and an adequate correspondence was established. It is shown that on the final grilles the transition is blurry.
The description of the blurry phase transition was carried out using two approaches. In the first, standard approach, the transition is described using the so-called inclusion function, which makes the meaning of the share of one of the phases in the general set. It was established that such an approach in this system is ineffective, since the found position of the conditional boundary of the blurred transition is determined only by the size of the chosen experimental lattice and does not bear objective meaning.
The second, original approach is proposed, based on the introduction of an parameter of order equal to the reverse average tree height, and the analysis of its behavior. It was established that the dynamics of such an order parameter in the $\sigma = \text{const}$ section with very small differences has the type of distribution of Fermi – Dirac ($\sigma$ performs the same function as the temperature for the distribution of Fermi – Dirac, $x_0$ — energy function). An empirical expression has been selected for the order parameter, an analogue of the chemical potential is introduced and calculated, which makes sense of the characteristic scale of the order parameter — that is, the values of $x_0$, in which the order can be considered a disorder. This criterion is the basis for determining the boundary of the conditional transition in this approach. It was established that this boundary corresponds to the average height of a tree equal to two generations. Based on the found properties, recommendations for medical institutions are proposed to control the provision of limb of the path of patients.
The model discussed and its description using conditionally-infinite trees have applications to many hierarchical systems. These systems include: internet routing networks, bureaucratic networks, trade and logistics networks, citation networks, game strategies, population dynamics problems, and others.
-
Mathematical model of the biometric iris recognition system
Computer Research and Modeling, 2020, v. 12, no. 3, pp. 629-639Automatic recognition of personal identity by biometric features is based on unique peculiarities or characteristics of people. Biometric identification process consist in making of reference templates and comparison with new input data. Iris pattern recognition algorithms presents high accuracy and low identification errors percent on practice. Iris pattern advantages over other biometric features are determined by its high degree of freedom (nearly 249), excessive density of unique features and constancy. High recognition reliability level is very important because it provides search in big databases. Unlike one-to-one check mode that is applicable only to small calculation count it allows to work in one-to-many identification mode. Every biometric identification system appears to be probabilistic and qualitative characteristics description utilizes such parameters as: recognition accuracy, false acceptance rate and false rejection rate. These characteristics allows to compare identity recognition methods and asses the system performance under any circumstances. This article explains the mathematical model of iris pattern biometric identification and its characteristics. Besides, there are analyzed results of comparison of model and real recognition process. To make such analysis there was carried out the review of existing iris pattern recognition methods based on different unique features vector. The Python-based software package is described below. It builds-up probabilistic distributions and generates large test data sets. Such data sets can be also used to educate the identification decision making neural network. Furthermore, synergy algorithm of several iris pattern identification methods was suggested to increase qualitative characteristics of system in comparison with the use of each method separately.
-
Ensemble building and statistical mechanics methods for MHC-peptide binding prediction
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1383-1395The proteins of the Major Histocompatibility Complex (MHC) play a key role in the functioning of the adaptive immune system, and the identification of peptides that bind to them is an important step in the development of vaccines and understanding the mechanisms of autoimmune diseases. Today, there are a number of methods for predicting the binding of a particular MHC allele to a peptide. One of the best such methods is NetMHCpan-4.0, which is based on an ensemble of artificial neural networks. This paper presents a methodology for qualitatively improving the underlying neural network underlying NetMHCpan-4.0. The proposed method uses the ensemble construction technique and adds as input an estimate of the Potts model taken from static mechanics, which is a generalization of the Ising model. In the general case, the model reflects the interaction of spins in the crystal lattice. Within the framework of the proposed method, the model is used to better represent the physical nature of the interaction of proteins included in the complex. To assess the interaction of the MHC + peptide complex, we use a two-dimensional Potts model with 20 states (corresponding to basic amino acids). Solving the inverse problem using data on experimentally confirmed interacting pairs, we obtain the values of the parameters of the Potts model, which we then use to evaluate a new pair of MHC + peptide, and supplement this value with the input data of the neural network. This approach, combined with the ensemble construction technique, allows for improved prediction accuracy, in terms of the positive predictive value (PPV) metric, compared to the baseline model.
-
Simulation of lightning initiation on the basis of dynamical grap
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 125-147Despite numerous achievements of modern science the problem of lightning initiation in an electrodeless thundercloud, the maximum electric field strength inside which is approximately an order of magnitude lower than the dielectric strength of air, remains unsolved. Although there is no doubt that discharge activity begins with the appearance of positive streamers, which can develop under approximately half the threshold electric field as compared to negative ones, it remains unexplored how cold weakly conducting streamer systems unite in a joint hot well-conducting leader channel capable of self-propagation due to effective polarization in a relatively small external field. In this study, we present a self-organizing transport model which is applied to the case of electric discharge tree formation in a thundercloud. So, the model is aimed at numerical simulation of the initial stage of lightning discharge development. Among the innovative features of the model are the absence of grid spacing, high spatiotemporal resolution, and consideration of temporal evolution of electrical parameters of transport channels. The model takes into account the widely known asymmetry between threshold fields needed for positive and negative streamers development. In our model, the resulting well-conducting leader channel forms due to collective effect of combining the currents of tens of thousands of interacting streamer channels each of which initially has negligible conductivity and temperature that does not differ from the ambient one. The model bipolar tree is a directed graph (it has both positive and negative parts). It has morphological and electrodynamic characteristics which are intermediate between laboratory long spark and developed lightning. The model has universal character which allows to use it in other tasks related to the study of transport (in the broad sense of the word) networks.
-
Technology for collecting initial data for constructing models for assessing the functional state of a human by pupil's response to illumination changes in the solution of some problems of transport safety
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 417-427This article solves the problem of developing a technology for collecting initial data for building models for assessing the functional state of a person. This condition is assessed by the pupil response of a person to a change in illumination based on the pupillometry method. This method involves the collection and analysis of initial data (pupillograms), presented in the form of time series characterizing the dynamics of changes in the human pupils to a light impulse effect. The drawbacks of the traditional approach to the collection of initial data using the methods of computer vision and smoothing of time series are analyzed. Attention is focused on the importance of the quality of the initial data for the construction of adequate mathematical models. The need for manual marking of the iris and pupil circles is updated to improve the accuracy and quality of the initial data. The stages of the proposed technology for collecting initial data are described. An example of the obtained pupillogram is given, which has a smooth shape and does not contain outliers, noise, anomalies and missing values. Based on the presented technology, a software and hardware complex has been developed, which is a collection of special software with two main modules, and hardware implemented on the basis of a Raspberry Pi 4 Model B microcomputer, with peripheral equipment that implements the specified functionality. To evaluate the effectiveness of the developed technology, models of a single-layer perspetron and a collective of neural networks are used, for the construction of which the initial data on the functional state of intoxication of a person were used. The studies have shown that the use of manual marking of the initial data (in comparison with automatic methods of computer vision) leads to a decrease in the number of errors of the 1st and 2nd years of the kind and, accordingly, to an increase in the accuracy of assessing the functional state of a person. Thus, the presented technology for collecting initial data can be effectively used to build adequate models for assessing the functional state of a person by pupillary response to changes in illumination. The use of such models is relevant in solving individual problems of ensuring transport security, in particular, monitoring the functional state of drivers.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




