All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Approximation of analytic functions by repeated de la Vallee Poussin sums
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 367-377Views (last year): 45.The paper deals with the problems of approximation of periodic functions of high smoothness by arithmetic means of Fourier sums. The simplest and natural example of a linear process of approximation of continuous periodic functions of a real variable is the approximation of these functions by partial sums of the Fourier series. However, the sequences of partial Fourier sums are not uniformly convergent over the entire class of continuous $2\pi$-periodic functions. In connection with this, a significant number of papers is devoted to the study of the approximative properties of other approximation methods, which are generated by certain transformations of the partial sums of Fourier series and allow us to construct sequences of trigonometrical polynomials that would be uniformly convergent for each function $f \in C$. In particular, over the past decades, de la Vallee Poussin sums and Fejer sums have been widely studied. One of the most important directions in this field is the study of the asymptotic behavior of upper bounds of deviations of arithmetic means of Fourier sums on different classes of periodic functions. Methods of investigation of integral representations of deviations of polynomials on the classes of periodic differentiable functions of real variable originated and received its development through the works of S.M. Nikol’sky, S.B. Stechkin, N.P. Korneichuk, V.K. Dzadyk, etc.
The aim of the work systematizes known results related to the approximation of classes of periodic functions of high smoothness by arithmetic means of Fourier sums, and presents new facts obtained for particular cases. In the paper is studied the approximative properties of $r$-repeated de la Vallee Poussin sums on the classes of periodic functions that can be regularly extended into the fixed strip of the complex plane. We obtain asymptotic formulas for upper bounds of the deviations of repeated de la Vallee Poussin sums taken over classes of periodic analytic functions. In certain cases, these formulas give a solution of the corresponding Kolmogorov–Nikolsky problem. We indicate conditions under which the repeated de la Vallee Poussin sums guarantee a better order of approximation than ordinary de la Vallee Poussin sums.
-
Introduction to the parallelization of algorithms and programs
Computer Research and Modeling, 2010, v. 2, no. 3, pp. 231-272Views (last year): 53. Citations: 22 (RSCI).Difference of software development for parallel computing technology from sequential programming is dicussed. Arguements for introduction of new phases into technology of software engineering are given. These phases are: decomposition of algorithms, assignment of jobs to performers, conducting and mapping of logical to physical performers. Issues of performance evaluation of algorithms are briefly discussed. Decomposition of algorithms and programs into parts that can be executed in parallel is dicussed.
-
A new form of differential equations in modeling of the motion of a heavy solid
Computer Research and Modeling, 2016, v. 8, no. 6, pp. 873-884Views (last year): 6.The different types of the reduced equations are known in the dynamics a heavy rigid body with a fixed point. Since the Euler−Poisson’s equations admit the three first integrals, then for the first approach the obtaining new forms of equations are usually based on these integrals. The system of six scalar equations can be transformed to a third-order system with them. However, in indicated approach the reduced system will have a feature as in the form of radical expressions a relatively the components of the angular velocity vector. This fact prevents the effective the effective application of numerical and asymptotic methods of solutions research. In the second approach the different types of variables in a problem are used: Euler’s angles, Hamilton’s variables and other variables. In this approach the Euler−Poisson’s equations are reduced to either the system of second-order differential equations, or the system for which the special methods are effective. In the article the method of finding the reduced system based on the introduction of an auxiliary variable is applied. This variable characterizes the mixed product of the angular momentum vector, the vector of vertical and the unit vector barycentric axis of the body. The system of four differential equations, two of which are linear differential equations was obtained. This system has no analog and does not contain the features that allows to apply to it the analytical and numerical methods. Received form of equations is applied for the analysis of a special class of solutions in the case when the center of mass of the body belongs to the barycentric axis. The variant in which the sum of the squares of the two components of the angular momentum vector with respect to not barycentric axes is constant. It is proved that this variant exists only in the Steklov’s solution. The obtained form of Euler−Poisson’s equations can be used to the investigation of the conditions of existence of other classes of solutions. Certain perspectives obtained equations consists a record of all solutions for which the center of mass is on barycentric axis in the variables of this article. It allows to carry out a classification solutions of Euler−Poisson’s equations depending on the order of invariant relations. Since the equations system specified in the article has no singularities, it can be considered in computer modeling using numerical methods.
-
Optimal fishing and evolution of fish migration routes
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 879-893A new discrete ecological-evolutionary mathematical model is presented, in which the search mechanisms for evolutionarily stable migration routes of fish populations are implemented. The proposed adaptive designs have a small dimension, and therefore have high speed. This allows carrying out calculations on long-term perspective for an acceptable machine time. Both geometric approaches of nonlinear analysis and computer “asymptotic” methods were used in the study of stability. The migration dynamics of the fish population is described by a certain Markov matrix, which can change during evolution. The “basis” matrices are selected in the family of Markov matrices (of fixed dimension), which are used to generate migration routes of mutant. A promising direction of the evolution of the spatial behavior of fish is revealed for a given fishery and food supply, as a result of competition of the initial population with mutants. This model was applied to solve the problem of optimal catch for the long term, provided that the reservoir is divided into two parts, each of which has its own owner. Dynamic programming is used, based on the construction of the Bellman function, when solving optimization problems. A paradoxical strategy of “luring” was discovered, when one of the participants in the fishery temporarily reduces the catch in its water area. In this case, the migrating fish spends more time in this area (on condition of equal food supply). This route is evolutionarily fixes and does not change even after the resumption of fishing in the area. The second participant in the fishery can restore the status quo by applying “luring” to its part of the water area. Endless sequence of “luring” arises as a kind of game “giveaway”. A new effective concept has been introduced — the internal price of the fish population, depending on the zone of the reservoir. In fact, these prices are Bellman's private derivatives, and can be used as a tax on caught fish. In this case, the problem of long-term fishing is reduced to solving the problem of one-year optimization.
-
Stochastic simulation of chemical reactions in subdiffusion medium
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 87-104Theory of anomalous diffusion, which describe a vast number of transport processes with power law mean squared displacement, is actively advancing in recent years. Diffusion of liquids in porous media, carrier transport in amorphous semiconductors and molecular transport in viscous environments are widely known examples of anomalous deceleration of transport processes compared to the standard model.
Direct Monte Carlo simulation is a convenient tool for studying such processes. An efficient stochastic simulation algorithm is developed in the present paper. It is based on simple renewal process with interarrival times that have power law asymptotics. Analytical derivations show a deep connection between this class of random process and equations with fractional derivatives. The algorithm is further generalized by coupling it with chemical reaction simulation. It makes stochastic approach especially useful, because the exact form of integrodifferential evolution equations for reaction — subdiffusion systems is still a matter of debates.
Proposed algorithm relies on non-markovian random processes, hence one should carefully account for qualitatively new effects. The main question is how molecules leave the system during chemical reactions. An exact scheme which tracks all possible molecule combinations for every reaction channel is computationally infeasible because of the huge number of such combinations. It necessitates application of some simple heuristic procedures. Choosing one of these heuristics greatly affects obtained results, as illustrated by a series of numerical experiments.
-
Seismic wave fields in spherically symmetric Earth with high details. Analytical solution
Computer Research and Modeling, 2025, v. 17, no. 5, pp. 903-922An analytical solution is obtained for seismic wave fields in a spherically symmetric Earth. In the case of an arbitrary layered medium, the solution, which includes Bessel functions, is constructed by means of a differential sweep method. Asymptotic of Bessel functions is used for stable calculation of wave fields. It is shown that the classical asymptotic in the case of a sphere of large (in wavelengths) dimensions gives an error in the solution. The new asymptotic is used for efficient calculation of a solution without errors with high detail. A program has been created that makes it possible to carry out calculations for high-frequency (1 hertz and higher) teleseismic wave fields in a discrete (layered) sphere of planetary dimensions. Calculations can be carried even out on personal computers with OpenMP parallelization.
In the works of Burmin (2019) proposed a spherically symmetric model of the Earth. It is characterized by the fact that in it the outer core has a viscosity and, therefore, an effective shear modulus other than zero. For this model of the Earth, a highly detailed calculation was carried out with a carrier frequency of 1 hertz. As a result of the analytical calculation, it was found that highfrequency oscillations of small amplitude, the so-called “precursors”, appear ahead of the PKP waves. An analytical calculation showed that the theoretical seismograms for this model of the Earth are in many respects similar to the experimental data. This confirms the correctness of the ideas underlying its construction.
-
On possible changes in phytocenoses of the Sea of Azov under climate warming
Computer Research and Modeling, 2017, v. 9, no. 6, pp. 981-991Views (last year): 11.Base long-term modern scenarios of hydrochemical and temperature regimes of the Sea of Azov were considered. New schemes of modeling mechanisms of algal adaptation to changes in the hydrochemical regime and temperature were proposed. In comparison to the traditional ecological-evolutionary schemes, these models have a relatively small dimension, high speed and allow carrying out various calculations on long-term perspective (evolutionally significant times). Based on the ecology-evolutionary model of the lower trophic levels the impact of these environmental factors on the dynamics and microevolution of algae in the Sea of Azov was estimated. In each scenario, the calculations were made for 100 years, with the final values of the variables and parameters not depending on the choice of the initial values. In the process of such asymptotic computer analysis, it was found that as a result of climate warming and temperature adaptation of organisms, the average annual biomass of thermophilic algae (Pyrrophyta and Cyanophyta) naturally increases. However, for a number of diatom algae (Bacillariophyta), even with their temperature adaptation, the average annual biomass may unexpectedly decrease. Probably, this phenomenon is associated with a toughening of competition between species with close temperature parameters of existence. The influence of the variation in the chemical composition of the Don River’s flow on the dynamics of nutrients and algae of the Sea of Azov was also investigated. It turned out that the ratio of organic forms of nitrogen and phosphorus in sea waters varies little. This stabilization phenomenon will take place for all high-productive reservoirs with low flow, due to autochthonous origin of larger part of organic matter in water bodies of this type.
-
A discreet ‘power–society–economics’ model based on cellular automaton
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 561-572Views (last year): 8. Citations: 1 (RSCI).In this paper we consider a new modification of the discrete version of Mikhailov’s ‘power–society’ model, previously proposed by the author. This modification includes social-economical dynamics and corruption of the system similarly to continuous ‘power–society–economics–corruption’ model but is based on a stochastic cellular automaton describing the dynamics of power distribution in a hierarchy. This new version is founded on previously proposed ‘power–society’ system modeling cellular automaton, its cell state space enriched with variables corresponding to population, economic production, production assets volume and corruption level. The social-economical structure of the model is inherited from Solow and deterministic continuous ‘power–society–economics–corruption’ models. At the same time the new model is flexible, allowing to consider regional differentiation in all social and economical dynamics parameters, to use various production and demography models and to account for goods transit between the regions. A simulation system was built, including three power hierarchy levels, five regions and 100 municipalities. and a number of numerical experiments were carried out. This research yielded results showing specific changes of the dynamics in power distribution in hierarchy when corruption level increases. While corruption is zero (similar to the previous version of the model) the power distribution in hierarchy asymptotically tends to one of stationary states. If the corruption level increases substantially, volume of power in the system is subjected to irregular oscillations, and only much later tends to a stationary value. The meaning of these results can be interpreted as the fact that the stability of power hierarchy decreases when corruption level goes up.
-
Numerical-analytical modeling of gravitational lensing of the electromagnetic waves in random-inhomogeneous space plasma
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 433-443Instrument of numerical-analytical modeling of characteristics of propagation of electromagnetic waves in chaotic space plasma with taking into account effects of gravitation is developed for interpretation of data of measurements of astrophysical precision instruments of new education. The task of propagation of waves in curved (Riemann’s) space is solved in Euclid’s space by introducing of the effective index of refraction of vacuum. The gravitational potential can be calculated for various model of distribution of mass of astrophysical objects and at solution of Poisson’s equation. As a result the effective index of refraction of vacuum can be evaluated. Approximate model of the effective index of refraction is suggested with condition that various objects additively contribute in total gravitational field. Calculation of the characteristics of electromagnetic waves in the gravitational field of astrophysical objects is performed by the approximation of geometrical optics with condition that spatial scales of index of refraction a lot more wavelength. Light differential equations in Euler’s form are formed the basis of numerical-analytical instrument of modeling of trajectory characteristic of waves. Chaotic inhomogeneities of space plasma are introduced by model of spatial correlation function of index of refraction. Calculations of refraction scattering of waves are performed by the approximation of geometrical optics. Integral equations for statistic moments of lateral deviations of beams in picture plane of observer are obtained. Integrals for moments are reduced to system of ordinary differential equations the firsts order with using analytical transformations for cooperative numerical calculation of arrange and meansquare deviations of light. Results of numerical-analytical modeling of trajectory picture of propagation of electromagnetic waves in interstellar space with taking into account impact of gravitational fields of space objects and refractive scattering of waves on inhomogeneities of index of refraction of surrounding plasma are shown. Based on the results of modeling quantitative estimation of conditions of stochastic blurring of the effect of gravitational lensing of electromagnetic waves at various frequency ranges is performed. It’s shown that operating frequencies of meter range of wavelengths represent conditional low-frequency limit for observational of the effect of gravitational lensing in stochastic space plasma. The offered instrument of numerical-analytical modeling can be used for analyze of structure of electromagnetic radiation of quasar propagating through group of galactic.
-
Experimental investigation of Russian citizens expenses on new cars and a correspondence to their income
Computer Research and Modeling, 2012, v. 4, no. 3, pp. 621-629Citations: 3 (RSCI).The question of distribution of citizens expenses in modern Russia is experimentally investigated. New cars were chosen as representative group of the acquired goods as well as earlier. Results of the analysis of sales of new cars for 2007–2009 are presented below. Main “body” of density of probability to find certain number of cars depending on their price, since some initial price up to ~ k$60, is an exponential distribution. The found feature of distribution (unlike 2003–2005) was an existence of minimum price. For expensive cars (distribution “tail”), the asymptotic form is the Pareto distribution with a hyperbole exponent a little greater, than measured earlier for 2003–2005. The results turned up to be similar to direct measurements of distribution of tax declarations on their size, submitted to the USA in 2004 where exponential distribution of the income of citizens, since some minimum, with some asymptotic in the form of Pareto's distribution also was observed.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




