Результаты поиска по 'numerical':
Найдено статей: 476
  1. The paper considers the problem of parameter identification of discrete-time linear stochastic systems in the state space with additive and multiplicative noise. It is assumed that the state and measurements equations of a discrete-time linear stochastic system depend on an unknown parameter to be identified.

    A new approach to the construction of gradient parameter identification methods in the class of discrete-time linear stochastic systems with additive and multiplicative noise is presented, based on the application of modified weighted Gram – Schmidt orthogonalization (MWGS) and the discrete-time information-type filtering algorithms.

    The main theoretical results of this research include: 1) a new identification criterion in terms of an extended information filter; 2) a new algorithm for calculating derivatives with respect to an uncertainty parameter in a discrete-time linear stochastic system based on an extended information LD filter using the direct procedure of modified weighted Gram – Schmidt orthogonalization; and 3) a new method for calculating the gradient of identification criteria using a “differentiated” extended information LD filter.

    The advantages of this approach are that it uses MWGS orthogonalization which is numerically stable against machine roundoff errors, and it forms the basis of all the developed methods and algorithms. The information LD-filter maintains the symmetry and positive definiteness of the information matrices. The algorithms have an array structure that is convenient for computer implementation.

    All the developed algorithms were implemented in MATLAB. A series of numerical experiments were carried out. The results obtained demonstrated the operability of the proposed approach, using the example of solving the problem of parameter identification for a mathematical model of a complex mechanical system.

    The results can be used to develop methods for identifying parameters in mathematical models that are represented in state space by discrete-time linear stochastic systems with additive and multiplicative noise.

  2. The paper presents the results of theoretical investigation of the peculiarities of the quasi-harmonic signal’s phase statistical distribution, while the quasi-harmonic signal is formed as a result of the Gaussian noise impact on the initially harmonic signal. The revealed features of the phase distribution became a basis for the original technique elaborated for estimating the parameters of the initial, undistorted signal. It has been shown that the task of estimation of the initial phase value can be efficiently solved by calculating the magnitude of the mathematical expectation of the results of the phase sampled measurements, while for solving the task of estimation of the second parameter — the signal level respectively to the noise level — the dependence of the phase sampled measurements variance upon the sough-for parameter is proposed to be used. For solving this task the analytical formulas having been obtained in explicit form for the moments of lower orders of the phase distribution, are applied. A new approach to quasi-harmonic signal’s parameters estimation based on the method of moments has been developed and substantiated. In particular, the application of this method ensures a high-precision measuring the amplitude characteristics of a signal by means of the phase measurements only. The numerical results obtained by means of conducted computer simulation of the elaborated technique confirm both the theoretical conclusions and the method’s efficiency. The existence and the uniqueness of the task solution by the method of moments is substantiated. It is shown that the function that describes the dependence of the phase second central moment on the sough-for parameter, is a monotonically decreasing and thus the single-valued function. The developed method may be of interest for solving a wide range of scientific and applied tasks, connected with the necessity of estimation of both the signal level and the phase value, in such areas as data processing in systems of medical diagnostic visualization, radio-signals processing, radio-physics, optics, radio-navigation and metrology.

  3. Shirkov P.D., Zubanov A.M.
    Two-stage single ROW methods with complex coefficients for autonomous systems of ODE
    Computer Research and Modeling, 2010, v. 2, no. 1, pp. 19-32

    The basic subset of two-stage Rosenbrock schemes with complex coefficients for numerical solution of autonomous systems of ordinary differential equations (ODE) has been considered. Numerical realization of such schemes requires one LU-decomposition, two computations of right side function and one computation of Jacoby matrix of the system per one step. The full theoretical investigation of accuracy and stability of such schemes have been done. New A-stable methods of the 3-rd order of accuracy with different properties have been constructed. There are high order L-decremented schemes as well as schemes with simple estimation of the main term of truncation error which is necessary for automatic evaluation of time step. Testing of new methods has been performed.

    Citations: 1 (RSCI).
  4. Silaev D.A.
    Semilocal smoothihg S-splines
    Computer Research and Modeling, 2010, v. 2, no. 4, pp. 349-357

    Semilocal smoothing splines or S-splines from class C p are considered. These splines consist of polynomials of a degree n, first p + 1 coefficients of each polynomial are determined by values of the previous polynomial and p its derivatives at the point of splice, coefficients at higher terms of the polynomial are determined by the least squares method. These conditions are supplemented by the periodicity condition for the spline function on the whole segment of definition or by initial conditions. Uniqueness and existence theorems are proved. Stability and convergence conditions for these splines are established.

    Views (last year): 1. Citations: 6 (RSCI).
  5. Borina M.Y., Polezhaev A.A.
    Diffusion instability in a threevariable reaction–diffusion model
    Computer Research and Modeling, 2011, v. 3, no. 2, pp. 135-146

    Investigation of occurrence of diffusion instability in a set of three reaction–diffusion equations is carried out. In the general case the condition for both Turing and wave instabilities are obtained. Qualitative properties of the system, in which the bifurcation of each of the two types can take place, are clarified. In numerical experiments it is shown that if the corresponding conditions are met in the nonlinear model, spatiotemporal patterns are formed, which are predicted by linear analysis.

    Views (last year): 1. Citations: 7 (RSCI).
  6. Korchak A.B.
    Accuracy control for fast circuit simulation
    Computer Research and Modeling, 2011, v. 3, no. 4, pp. 365-370

    We developed an algorithm for fast simulation of VLSI CMOS (Very Large Scale Integration with Complementary Metal-Oxide-Semiconductors) with an accuracy control. The algorithm provides an ability of parallel numerical experiments in multiprocessor computational environment. There is computation speed up by means of block-matrix and structural (DCCC) decompositions application. A feature of the approach is both in a choice of moments and ways of parameters synchronization and application of multi-rate integration methods. Due to this fact we have ability to estimate and control error of given characteristics.

    Citations: 1 (RSCI).
  7. Karpov A.I.
    Parametric study of the thermodynamic algorithm for the prediction of steady flame spread rate
    Computer Research and Modeling, 2013, v. 5, no. 5, pp. 799-804

    The stationary flame spread rate has been calculated using the relationship based on the thermodynamic variational principle. It has been shown that proposed numerical algorithm provides the stable convergence under any initial approximation, which could be noticeably far from the searched solution.

    Views (last year): 1. Citations: 1 (RSCI).
  8. Golomazov M.M.
    Simulation of asteroid braking in the Earth atmosphere
    Computer Research and Modeling, 2013, v. 5, no. 6, pp. 917-926

    This article is investigated phenomenon of asteroid braking in neighborhood Chelyabinsk. Simulation of trajectory and asteroid basic parameters is accomplished on the basis of not numerous fixed video film and measurements. Calculation of hypersonic flow around asteroid is carried out before and after asteroid collapse. Possible version of asteroids synchronous braking is discussed. Trajectory data and gas dynamic functions are presented as data for definition of asteroid collapse.

    Views (last year): 4. Citations: 2 (RSCI).
  9. Pechenyuk A.V.
    Benchmarking of CEA FlowVision in ship flow simulation
    Computer Research and Modeling, 2014, v. 6, no. 6, pp. 889-899

    In the field of naval architecture the most competent recommendations in verification and validation of the numerical methods were developed within an international workshop on the numerical prediction of ship viscous flow which is held every five years in Gothenburg (Sweden) and Tokyo (Japan) alternately. In the workshop “Gothenburg–2000” three modern hull forms with reliable experimental data were introduced as test cases. The most general case among them is a containership KCS, a ship of moderate specific speed and fullness. The paper focuses on a numerical research of KCS hull flow, which was made according to the formal procedures of the workshop with the help of CEA FlowVision. Findings were compared with experimental data and computational data of other key CEA.

    Views (last year): 1. Citations: 5 (RSCI).
  10. The paper provides a solution of a task of calculating the parameters of a Rician distributed signal on the basis of the maximum likelihood principle in limiting cases of large and small values of the signal-tonoise ratio. The analytical formulas are obtained for the solution of the maximum likelihood equations’ system for the required signal and noise parameters for both the one-parameter approximation, when only one parameter is being calculated on the assumption that the second one is known a-priori, and for the two-parameter task, when both parameters are a-priori unknown. The direct calculation of required signal and noise parameters by formulas allows escaping the necessity of time resource consuming numerical solving the nonlinear equations’ s system and thus optimizing the duration of computer processing of signals and images. There are presented the results of computer simulation of a task confirming the theoretical conclusions. The task is meaningful for the purposes of Rician data processing, in particular, magnetic-resonance visualization.

    Views (last year): 2.
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"