Результаты поиска по 'numerical simulating':
Найдено статей: 214
  1. Motorin A.A., Stupitsky E.L.
    Physical analysis and mathematical modeling of the parameters of explosion region produced in a rarefied ionosphere
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 817-833

    The paper presents a physical and numerical analysis of the dynamics and radiation of explosion products formed during the Russian-American experiment in the ionosphere using an explosive generator based on hexogen (RDX) and trinitrotoluene (TNT). The main attention is paid to the radiation of the perturbed region and the dynamics of the products of explosion (PE). The detailed chemical composition of the explosion products is analyzed and the initial concentrations of the most important molecules capable of emitting in the infrared range of the spectrum are determined, and their radiative constants are given. The initial temperature of the explosion products and the adiabatic exponent are determined. The nature of the interpenetration of atoms and molecules of a highly rarefied ionosphere into a spherically expanding cloud of products is analyzed. An approximate mathematical model of the dynamics of explosion products under conditions of mixing rarefied ionospheric air with them has been developed and the main thermodynamic characteristics of the system have been calculated. It is shown that for a time of 0,3–3 sec there is a significant increase in the temperature of the scattering mixture as a result of its deceleration. In the problem under consideration the explosion products and the background gas are separated by a contact boundary. To solve this two-region gas dynamic problem a numerical algorithm based on the Lagrangian approach was developed. It was necessary to fulfill special conditions at the contact boundary during its movement in a stationary gas. In this case there are certain difficulties in describing the parameters of the explosion products near the contact boundary which is associated with a large difference in the size of the mass cells of the explosion products and the background due to a density difference of 13 orders of magnitude. To reduce the calculation time of this problem an irregular calculation grid was used in the area of explosion products. Calculations were performed with different adiabatic exponents. The most important result is temperature. It is in good agreement with the results obtained by the method that approximately takes into account interpenetration. The time behavior of the IR emission coefficients of active molecules in a wide range of the spectrum is obtained. This behavior is qualitatively consistent with experiments for the IR glow of flying explosion products.

  2. Mikishanina E.A., Platonov P.S.
    Motion control by a highly maneuverable mobile robot in the task of following an object
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1301-1321

    This article is devoted to the development of an algorithm for trajectory control of a highly maneuverable four-wheeled robotic transport platform equipped with mecanum wheels, in order to organize its movement behind some moving object. The calculation of the kinematic ratios of this platform in a fixed coordinate system is presented, which is necessary to determine the angular velocities of the robot wheels depending on a given velocity vector. An algorithm has been developed for the robot to follow a mobile object on a plane without obstacles based on the use of a modified chase method using different types of control functions. The chase method consists in the fact that the velocity vector of the geometric center of the platform is co-directed with the vector connecting the geometric center of the platform and the moving object. Two types of control functions are implemented: piecewise and constant. The piecewise function means control with switching modes depending on the distance from the robot to the target. The main feature of the piecewise function is a smooth change in the robot’s speed. Also, the control functions are divided according to the nature of behavior when the robot approaches the target. When using one of the piecewise functions, the robot’s movement slows down when a certain distance between the robot and the target is reached and stops completely at a critical distance. Another type of behavior when approaching the target is to change the direction of the velocity vector to the opposite, if the distance between the platform and the object is the minimum allowable, which avoids collisions when the target moves in the direction of the robot. This type of behavior when approaching the goal is implemented for a piecewise and constant function. Numerical simulation of the robot control algorithm for various control functions in the task of chasing a target, where the target moves in a circle, is performed. The pseudocode of the control algorithm and control functions is presented. Graphs of the robot’s trajectory when moving behind the target, speed changes, changes in the angular velocities of the wheels from time to time for various control functions are shown.

  3. Panteleev M.A., Bershadsky E.S., Shibeko A.M., Nechipurenko D.Y.
    Current issues in computational modeling of thrombosis, fibrinolysis, and thrombolysis
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 975-995

    Hemostasis system is one of the key body’s defense systems, which is presented in all the liquid tissues and especially important in blood. Hemostatic response is triggered as a result of the vessel injury. The interaction between specialized cells and humoral systems leads to the formation of the initial hemostatic clot, which stops bleeding. After that the slow process of clot dissolution occurs. The formation of hemostatic plug is a unique physiological process, because during several minutes the hemostatic system generates complex structures on a scale ranging from microns for microvessel injury or damaged endothelial cell-cell contacts, to centimeters for damaged systemic arteries. Hemostatic response depends on the numerous coordinated processes, which include platelet adhesion and aggregation, granule secretion, platelet shape change, modification of the chemical composition of the lipid bilayer, clot contraction, and formation of the fibrin mesh due to activation of blood coagulation cascade. Computer modeling is a powerful tool, which is used to study this complex system at different levels of organization. This includes study of intracellular signaling in platelets, modelling humoral systems of blood coagulation and fibrinolysis, and development of the multiscale models of thrombus growth. There are two key issues of the computer modeling in biology: absence of the adequate physico-mathematical description of the existing experimental data due to the complexity of the biological processes, and high computational complexity of the models, which doesn’t allow to use them to test physiologically relevant scenarios. Here we discuss some key unresolved problems in the field, as well as the current progress in experimental research of hemostasis and thrombosis. New findings lead to reevaluation of the existing concepts and development of the novel computer models. We focus on the arterial thrombosis, venous thrombosis, thrombosis in microcirculation and the problems of fibrinolysis and thrombolysis. We also briefly discuss basic types of the existing mathematical models, their computational complexity, and principal issues in simulation of thrombus growth in arteries.

  4. Kuznetsov M.B., Kolobov A.V.
    Optimization of proton therapy with radiosensitizing nanoparticles and antiangiogenic therapy via mathematical modeling
    Computer Research and Modeling, 2025, v. 17, no. 4, pp. 697-715

    Optimization of antitumor radiotherapy represents an urgent issue, as approximately half of the patients diagnosed with cancer undergo radiotherapy during their treatment. Proton therapy is potentially more efficient than traditional X-ray radiotherapy due to fundamental differences in physics of dose deposition, leading to better targeting of tumors and less collateral damage to healthy tissue. There is increasing interest in the use of non-radioactive radiosensitizing tumor-specific nanoparticles the use of which can boost the performance of proton therapy. Such nanoparticles are small volumes of a sensitizer, such as boron-10 or various metal oxides, enclosed in a polymer layer containing tumor-specific antibodies, which allows for their targeted delivery to malignant cells. Furthermore, a combination of proton therapy with antiangiogenic therapy that normalizes tumor-associated microvasculature may yield further synergistic increase in overall treatment efficacy.

    We have developed a spatially distributed mathematical model simulating the growth of a non-invasive tumor undergoing treatment by fractionated proton therapy with nanosensitizers and antiangiogenic therapy. The modeling results suggest that the most effective way to combine these treatment modalities should strongly depend on the tumor cells’ proliferation rate and their intrinsic radiosensitivity. Namely, a combination of antiangiogenic therapy with proton therapy, regardless of whether radiosensitizing nanoparticles are used, benefits treatment efficacy of rapidly growing tumors as well as radioresistant tumors with moderate growth rate. In these cases, administration of proton therapy simultaneously with antiangiogenic drugs after the initial single injection of nanosensitizers is the most effective option among those analyzed. Conversely, for slowly growing tumors, maximization of the number of nanosensitizer injections without antiangiogenic therapy proves to be a more efficient option, with enhancement in treatment efficacy growing with the increase of tumor radiosensitivity. However, the results also show that the overall efficacy of proton therapy is likely to increase only modestly with the addition of nanosensitizers and antiangiogenic drugs.

  5. Revutskaya O.L., Neverova G.P., Frisman E.Y.
    A minimal model of density-dependent population dynamics incorporating sex structure: simulation and application
    Computer Research and Modeling, 2025, v. 17, no. 5, pp. 941-961

    This study proposes and analyzes a discrete-time mathematical model of population dynamics with seasonal reproduction, taking into account the density-dependent regulation and sex structure. In the model, population birth rate depends on the number of females, while density is regulated through juvenile survival, which decreases exponentially with increasing total population size. Analytical and numerical investigations of the model demonstrate that when more than half of both females and males survive, the population exhibits stable dynamics even at relatively high birth rates. Oscillations arise when the limitation of female survival exceeds that of male survival. Increasing the intensity of male survival limitation can stabilize population dynamics, an effect particularly evident when the proportion of female offspring is low. Depending on parameter values, the model exhibits stable, periodic, or irregular dynamics, including multistability, where changes in current population size driven by external factors can shift the system between coexisting dynamic modes. To apply the model to real populations, we propose an approach for estimating demographic parameters based on total abundance data. The key idea is to reduce the two-component discrete model with sex structure to a delay equation dependent only on total population size. In this formulation, the initial sex structure is expressed through total abundance and depends on demographic parameters. The resulting one-dimensional equation was applied to describe and estimate demographic characteristics of ungulate populations in the Jewish Autonomous Region. The delay equation provides a good fit to the observed dynamics of ungulate populations, capturing long-term trends in abundance. Point estimates of parameters fall within biologically meaningful ranges and produce population dynamics consistent with field observations. For moose, roe deer, and musk deer, the model suggests predominantly stable dynamics, while annual fluctuations are primarily driven by external factors and represent deviations from equilibrium. Overall, these estimates enable the analysis of structured population dynamics alongside short-term forecasting based on total abundance data.

  6. Platonov D.V., Minakov A.V., Dekterev A.A., Sentyabov A.V.
    Numerical modeling of flows with flow swirling
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 635-648

    This paper is devoted to investigation of the swirl flows. Such flows are widely used in various industrial processes. Swirl flows can be accompanied by time-dependent effects, for example, precession of the vortex core. In turn, the large-scale fluctuations due to the precession of the vortex can cause damage of structures and reduce of equipment reliability. Thus, for engineering calculations approaches that sufficiently well described such flows are required. This paper presents the technique of swirl flows calculation, tested for CFD packages Fluent and SigmaFlow. A numerical simulation of several swirl flow test problems was carried out. Obtained results are compared with each other and with the experimental data.

    Views (last year): 4. Citations: 2 (RSCI).
  7. Zenyuk D.A., Malinetsky G.G., Faller D.S.
    Simulation of corruption in hierarchical systems
    Computer Research and Modeling, 2014, v. 6, no. 2, pp. 321-329

    Simulation model of corruption in hierarchical systems which takes into account individual strategies of elements and collective behavior of large groups is proposed. Evolution of various characteristics like level of corruption or ratio of corrupted elements and their dependence on external parameters are discussed. The effectiveness of various anticorruptional strategies is examined by means of numeric analysis.

    Views (last year): 8. Citations: 11 (RSCI).
  8. Karpaev A.A., Aliev R.R.
    Application of simplified implicit Euler method for electrophysiological models
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 845-864

    A simplified implicit Euler method was analyzed as an alternative to the explicit Euler method, which is a commonly used method in numerical modeling in electrophysiology. The majority of electrophysiological models are quite stiff, since the dynamics they describe includes a wide spectrum of time scales: a fast depolarization, that lasts milliseconds, precedes a considerably slow repolarization, with both being the fractions of the action potential observed in excitable cells. In this work we estimate stiffness by a formula that does not require calculation of eigenvalues of the Jacobian matrix of the studied ODEs. The efficiency of the numerical methods was compared on the case of typical representatives of detailed and conceptual type models of excitable cells: Hodgkin–Huxley model of a neuron and Aliev–Panfilov model of a cardiomyocyte. The comparison of the efficiency of the numerical methods was carried out via norms that were widely used in biomedical applications. The stiffness ratio’s impact on the speedup of simplified implicit method was studied: a real gain in speed was obtained for the Hodgkin–Huxley model. The benefits of the usage of simple and high-order methods for electrophysiological models are discussed along with the discussion of one method’s stability issues. The reasons for using simplified instead of high-order methods during practical simulations were discussed in the corresponding section. We calculated higher order derivatives of the solutions of Hodgkin-Huxley model with various stiffness ratios; their maximum absolute values appeared to be quite large. A numerical method’s approximation constant’s formula contains the latter and hence ruins the effect of the other term (a small factor which depends on the order of approximation). This leads to the large value of global error. We committed a qualitative stability analysis of the explicit Euler method and were able to estimate the model’s parameters influence on the border of the region of absolute stability. The latter is used when setting the value of the timestep for simulations a priori.

  9. Volokhova A.V., Zemlyanay E.V., Kachalov V.V., Rikhvitskiy V.S.
    Simulation of the gas condensate reservoir depletion
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1081-1095

    One of problems in developing the gas condensate fields lies on the fact that the condensed hydrocarbons in the gas-bearing layer can get stuck in the pores of the formation and hence cannot be extracted. In this regard, research is underway to increase the recoverability of hydrocarbons in such fields. This research includes a wide range of studies on mathematical simulations of the passage of gas condensate mixtures through a porous medium under various conditions.

    In the present work, within the classical approach based on the Darcy law and the law of continuity of flows, we formulate an initial-boundary value problem for a system of nonlinear differential equations that describes a depletion of a multicomponent gas-condensate mixture in porous reservoir. A computational scheme is developed on the basis of the finite-difference approximation and the fourth order Runge .Kutta method. The scheme can be used for simulations both in the spatially one-dimensional case, corresponding to the conditions of the laboratory experiment, and in the two-dimensional case, when it comes to modeling a flat gas-bearing formation with circular symmetry.

    The computer implementation is based on the combination of C++ and Maple tools, using the MPI parallel programming technique to speed up the calculations. The calculations were performed on the HybriLIT cluster of the Multifunctional Information and Computing Complex of the Laboratory of Information Technologies of the Joint Institute for Nuclear Research.

    Numerical results are compared with the experimental data on the pressure dependence of output of a ninecomponent hydrocarbon mixture obtained at a laboratory facility (VNIIGAZ, Ukhta). The calculations were performed for two types of porous filler in the laboratory model of the formation: terrigenous filler at 25 .„R and carbonate one at 60 .„R. It is shown that the approach developed ensures an agreement of the numerical results with experimental data. By fitting of numerical results to experimental data on the depletion of the laboratory reservoir, we obtained the values of the parameters that determine the inter-phase transition coefficient for the simulated system. Using the same parameters, a computer simulation of the depletion of a thin gas-bearing layer in the circular symmetry approximation was carried out.

  10. Kudrov A.I., Sheremet M.A.
    Numerical simulation of corium cooling driven by natural convection in case of in-vessel retention and time-dependent heat generation
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 807-822

    Represented study considers numerical simulation of corium cooling driven by natural convection within a horizontal hemicylindrical cavity, boundaries of which are assumed isothermal. Corium is a melt of ceramic fuel of a nuclear reactor and oxides of construction materials.

    Corium cooling is a process occurring during severe accident associated with core melt. According to invessel retention conception, the accident may be restrained and localized, if the corium is contained within the vessel, only if it is cooled externally. This conception has a clear advantage over the melt trap, it can be implemented at already operating nuclear power plants. Thereby proper numerical analysis of the corium cooling has become such a relevant area of studies.

    In the research, we assume the corium is contained within a horizontal semitube. The corium initially has temperature of the walls. In spite of reactor shutdown, the corium still generates heat owing to radioactive decays, and the amount of heat released decreases with time accordingly to Way–Wigner formula. The system of equations in Boussinesq approximation including momentum equation, continuity equation and energy equation, describes the natural convection within the cavity. Convective flows are taken to be laminar and two-dimensional.

    The boundary-value problem of mathematical physics is formulated using the non-dimensional nonprimitive variables «stream function – vorticity». The obtained differential equations are solved numerically using the finite difference method and locally one-dimensional Samarskii scheme for the equations of parabolic type.

    As a result of the present research, we have obtained the time behavior of mean Nusselt number at top and bottom walls for Rayleigh number ranged from 103 to 106. These mentioned dependences have been analyzed for various dimensionless operation periods before the accident. Investigations have been performed using streamlines and isotherms as well as time dependences for convective flow and heat transfer rates.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"