Результаты поиска по 'optimal control':
Найдено статей: 36
  1. Okhapkin V.P.
    Optimal control of the commercial bank investment including the reinvestment processes
    Computer Research and Modeling, 2014, v. 6, no. 2, pp. 309-319

    Article is devoted to the creation of a mathematical control of the bank investment process. The whole process of building optimal control may be divided into two components: in the first place, there is the identification of the functions describing the liquid capital movement in the bank and, in the second place, the use of these functions in the scheme of dynamic programming. Before this problem was discussed in the article "Optimal control of the bank investment as a factor of economic stability" in the 4th issue for 2012. In the present article considers this modification of the solution, in particular, we use ℜ(φ) as a function of reinvestment, where φ is inflow of liquid capital realized at the previous step of control.

    Views (last year): 6. Citations: 1 (RSCI).
  2. Parkhomenko P.V.
    Pareto optimal analysis of global warming prevention by geoengineering methods
    Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1097-1108

    The study is based on a three-dimensional hydrodynamic global climate coupled model, including ocean model with real depths and continents configuration, sea ice evolution model and energy and moisture balance atmosphere model. Aerosol concentration from the year 2010 to 2100 is calculated as a controlling parameter to stabilize mean year surface air temperature. It is shown that by this way it is impossible to achieve the space and seasonal uniform approximation to the existing climate, although it is possible significantly reduce the greenhouse warming effect. Climate will be colder at 0.1–0.2 degrees in the low and mid-latitudes and at high latitudes it will be warmer at 0.2–1.2 degrees. The Pareto frontier is investigated and visualized for two parameters — atmospheric temperature mean square deviation for the winter and summer seasons. The Pareto optimal amount of sulfur emissions would be between 23.5 and 26.5 TgS/year.

    Views (last year): 1. Citations: 3 (RSCI).
  3. Orlova E.V.
    Model for operational optimal control of financial recourses distribution in a company
    Computer Research and Modeling, 2019, v. 11, no. 2, pp. 343-358

    A critical analysis of existing approaches, methods and models to solve the problem of financial resources operational management has been carried out in the article. A number of significant shortcomings of the presented models were identified, limiting the scope of their effective usage. There are a static nature of the models, probabilistic nature of financial flows are not taken into account, daily amounts of receivables and payables that significantly affect the solvency and liquidity of the company are not identified. This necessitates the development of a new model that reflects the essential properties of the planning financial flows system — stochasticity, dynamism, non-stationarity.

    The model for the financial flows distribution has been developed. It bases on the principles of optimal dynamic control and provides financial resources planning ensuring an adequate level of liquidity and solvency of a company and concern initial data uncertainty. The algorithm for designing the objective cash balance, based on principles of a companies’ financial stability ensuring under changing financial constraints, is proposed.

    Characteristic of the proposed model is the presentation of the cash distribution process in the form of a discrete dynamic process, for which a plan for financial resources allocation is determined, ensuring the extremum of an optimality criterion. Designing of such plan is based on the coordination of payments (cash expenses) with the cash receipts. This approach allows to synthesize different plans that differ in combinations of financial outflows, and then to select the best one according to a given criterion. The minimum total costs associated with the payment of fines for non-timely financing of expenses were taken as the optimality criterion. Restrictions in the model are the requirement to ensure the minimum allowable cash balances for the subperiods of the planning period, as well as the obligation to make payments during the planning period, taking into account the maturity of these payments. The suggested model with a high degree of efficiency allows to solve the problem of financial resources distribution under uncertainty over time and receipts, coordination of funds inflows and outflows. The practical significance of the research is in developed model application, allowing to improve the financial planning quality, to increase the management efficiency and operational efficiency of a company.

    Views (last year): 33.
  4. Reshitko M.A., Ougolnitsky G.A., Usov A.B.
    Numerical method for finding Nash and Shtakelberg equilibria in river water quality control models
    Computer Research and Modeling, 2020, v. 12, no. 3, pp. 653-667

    In this paper we consider mathematical model to control water quality. We study a system with two-level hierarchy: one environmental organization (supervisor) at the top level and a few industrial enterprises (agents) at the lower level. The main goal of the supervisor is to keep water pollution level below certain value, while enterprises pollute water, as a side effect of the manufacturing process. Supervisor achieves its goal by charging a penalty for enterprises. On the other hand, enterprises choose how much to purify their wastewater to maximize their income.The fee increases the budget of the supervisor. Moreover, effulent fees are charged for the quantity and/or quality of the discharged pollution. Unfortunately, in practice, such charges are ineffective due to the insufficient tax size. The article solves the problem of determining the optimal size of the charge for pollution discharge, which allows maintaining the quality of river water in the rear range.

    We describe system members goals with target functionals, and describe water pollution level and enterprises state as system of ordinary differential equations. We consider the problem from both supervisor and enterprises sides. From agents’ point a normal-form game arises, where we search for Nash equilibrium and for the supervisor, we search for Stackelberg equilibrium. We propose numerical algorithms for finding both Nash and Stackelberg equilibrium. When we construct Nash equilibrium, we solve optimal control problem using Pontryagin’s maximum principle. We construct Hamilton’s function and solve corresponding system of partial differential equations with shooting method and finite difference method. Numerical calculations show that the low penalty for enterprises results in increasing pollution level, when relatively high penalty can result in enterprises bankruptcy. This leads to the problem of choosing optimal penalty, which requires considering problem from the supervisor point. In that case we use the method of qualitatively representative scenarios for supervisor and Pontryagin’s maximum principle for agents to find optimal control for the system. At last, we compute system consistency ratio and test algorithms for different data. The results show that a hierarchical control is required to provide system stability.

  5. Korepanov V.O., Chkhartishvili A.G., Shumov V.V.
    Game-theoretic and reflexive combat models
    Computer Research and Modeling, 2022, v. 14, no. 1, pp. 179-203

    Modeling combat operations is an urgent scientific and practical task aimed at providing commanders and staffs with quantitative grounds for making decisions. The authors proposed the function of victory in combat and military operations, based on the function of the conflict by G. Tullock and taking into account the scale of combat (military) operations. On a sufficient volume of military statistics, the scale parameter was assessed and its values were found for the tactical, operational and strategic levels. The game-theoretic models «offensive – defense», in which the sides solve the immediate and subsequent tasks, having the formation of troops in one or several echelons, have been investigated. At the first stage of modeling, the solution of the immediate task is found — the breakthrough (holding) of defense points, at the second — the solution of the subsequent task — the defeat of the enemy in the depth of the defense (counterattack and restoration of defense). For the tactical level, using the Nash equilibrium, solutions were found for the closest problem (distribution of the forces of the sides by points of defense) in an antagonistic game according to three criteria: a) breakthrough of the weakest point, b) breakthrough of at least one point, and c) weighted average probability. It is shown that it is advisable for the attacking side to use the criterion of «breaking through at least one point», in which, all other things being equal, the maximum probability of breaking through the points of defense is ensured. At the second stage of modeling for a particular case (the sides are guided by the criterion of breaking through the weakest point when breaking through and holding defense points), the problem of distributing forces and facilities between tactical tasks (echelons) was solved according to two criteria: a) maximizing the probability of breaking through the defense point and the probability of defeating the enemy in depth defense, b) maximizing the minimum value of the named probabilities (the criterion of the guaranteed result). Awareness is an important aspect of combat operations. Several examples of reflexive games (games characterized by complex mutual awareness) and information management are considered. It is shown under what conditions information control increases the player’s payoff, and the optimal information control is found.

  6. Sofronova E.A., Diveev A.I., Kazaryan D.E., Konstantinov S.V., Daryina A.N., Seliverstov Y.A., Baskin L.A.
    Utilizing multi-source real data for traffic flow optimization in CTraf
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 147-159

    The problem of optimal control of traffic flow in an urban road network is considered. The control is carried out by varying the duration of the working phases of traffic lights at controlled intersections. A description of the control system developed is given. The control system enables the use of three types of control: open-loop, feedback and manual. In feedback control, road infrastructure detectors, video cameras, inductive loop and radar detectors are used to determine the quantitative characteristics of current traffic flow state. The quantitative characteristics of the traffic flows are fed into a mathematical model of the traffic flow, implemented in the computer environment of an automatic traffic flow control system, in order to determine the moments for switching the working phases of the traffic lights. The model is a system of finite-difference recurrent equations and describes the change in traffic flow on each road section at each time step, based on retrived data on traffic flow characteristics in the network, capacity of maneuvers and flow distribution through alternative maneuvers at intersections. The model has scaling and aggregation properties. The structure of the model depends on the structure of the graph of the controlled road network. The number of nodes in the graph is equal to the number of road sections in the considered network. The simulation of traffic flow changes in real time makes it possible to optimally determine the duration of traffic light operating phases and to provide traffic flow control with feedback based on its current state. The system of automatic collection and processing of input data for the model is presented. In order to model the states of traffic flow in the network and to solve the problem of optimal traffic flow control, the CTraf software package has been developed, a brief description of which is given in the paper. An example of the solution of the optimal control problem of traffic flows on the basis of real data in the road network of Moscow is given.

  7. Zhdanova O.L., Kolbina E.A., Frisman E.Y.
    Evolutionary effects of non-selective sustainable harvesting in a genetically heterogeneous population
    Computer Research and Modeling, 2025, v. 17, no. 4, pp. 717-735

    The problem of harvest optimization remains a central challenge in mathematical biology. The concept of Maximum Sustainable Yield (MSY), widely used in optimal exploitation theory, proposes maintaining target populations at levels ensuring maximum reproduction, theoretically balancing economic benefits with resource conservation. While MSYbased management promotes population stability and system resilience, it faces significant limitations due to complex intrapopulation structures and nonlinear dynamics in exploited species. Of particular concern are the evolutionary consequences of harvesting, as artificial selection may drive changes divergent from natural selection pressures. Empirical evidence confirms that selective harvesting alters behavioral traits, reduces offspring quality, and modifies population gene pools. In contrast, the genetic impacts of non-selective harvesting remain poorly understood and require further investigation.

    This study examines how non-selective harvesting with constant removal rates affects evolution in genetically heterogeneous populations. We model genetic diversity controlled by a single diallelic locus, where different genotypes dominate at high/low densities: r-strategists (high fecundity) versus K-strategists (resource-limited resilience). The classical ecological and genetic model with discrete time is considered. The model assumes that the fitness of each genotype linearly depends on the population size. By including the harvesting withdrawal coefficient, the model allows for linking the problem of optimizing harvest with the that of predicting genotype selection.

    Analytical results demonstrate that under MSY harvesting the equilibrium genetic composition remains unchanged while population size halves. The type of genetic equilibrium may shift, as optimal harvest rates differ between equilibria. Natural K-strategist dominance may reverse toward r-strategists, whose high reproduction compensates for harvest losses. Critical harvesting thresholds triggering strategy shifts were identified.

    These findings explain why exploited populations show slow recovery after harvesting cessation: exploitation reinforces adaptations beneficial under removal pressure but maladaptive in natural conditions. For instance, captive arctic foxes select for high-productivity genotypes, whereas wild populations favor lower-fecundity/higher-survival phenotypes. This underscores the necessity of incorporating genetic dynamics into sustainable harvesting management strategies, as MSY policies may inadvertently alter evolutionary trajectories through density-dependent selection processes. Recovery periods must account for genetic adaptation timescales in management frameworks.

  8. Borisova L.R., Kuznetsova A.V., Sergeeva N.V., Sen'ko O.V.
    Comparison of Arctic zone RF companies with different Polar Index ratings by economic criteria with the help of machine learning tools
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 201-215

    The paper presents a comparative analysis of the enterprises of the Arctic Zone of the Russian Federation (AZ RF) on economic indicators in accordance with the rating of the Polar index. This study includes numerical data of 193 enterprises located in the AZ RF. Machine learning methods are applied, both standard, from open source, and own original methods — the method of Optimally Reliable Partitions (ORP), the method of Statistically Weighted Syndromes (SWS). Held split, indicating the maximum value of the functional quality, this study used the simplest family of different one-dimensional partition with a single boundary point, as well as a collection of different two-dimensional partition with one boundary point on each of the two combining variables. Permutation tests allow not only to evaluate the reliability of the data of the revealed regularities, but also to exclude partitions with excessive complexity from the set of the revealed regularities. Patterns connected the class number and economic indicators are revealed using the SDT method on one-dimensional indicators. The regularities which are revealed within the framework of the simplest one-dimensional model with one boundary point and with significance not worse than p < 0.001 are also presented in the given study. The so-called sliding control method was used for reliable evaluation of such diagnostic ability. As a result of these studies, a set of methods that had sufficient effectiveness was identified. The collective method based on the results of several machine learning methods showed the high importance of economic indicators for the division of enterprises in accordance with the rating of the Polar index. Our study proved and showed that those companies that entered the top Rating of the Polar index are generally recognized by financial indicators among all companies in the Arctic Zone. However it would be useful to supplement the list of indicators with ecological and social criteria.

  9. Vetchanin E.V., Tenenev V.A., Shaura A.S.
    Motion control of a rigid body in viscous fluid
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 659-675

    We consider the optimal motion control problem for a mobile device with an external rigid shell moving along a prescribed trajectory in a viscous fluid. The mobile robot under consideration possesses the property of self-locomotion. Self-locomotion is implemented due to back-and-forth motion of an internal material point. The optimal motion control is based on the Sugeno fuzzy inference system. An approach based on constructing decision trees using the genetic algorithm for structural and parametric synthesis has been proposed to obtain the base of fuzzy rules.

    Views (last year): 2. Citations: 1 (RSCI).
  10. Varshavsky L.E.
    Control theory methods for creating market structures
    Computer Research and Modeling, 2014, v. 6, no. 5, pp. 839-859

    Control theory methods for creating market structures are discussed for two cases: when market participants are pursuing aims 1) of maximal growth and 2) of maximum economic efficiency of their firms. For the first case method based on variable structure systems principles is developed. For the second case dynamic game approach is proposed based on computation of Nash–Cournot and Stackelberg strategies with the help of Z-transform.

    Views (last year): 4. Citations: 4 (RSCI).
Pages: « first previous next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"