All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
On accelerated adaptive methods and their modifications for alternating minimization
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 497-515In the first part of the paper we present convergence analysis of AGMsDR method on a new class of functions — in general non-convex with $M$-Lipschitz-continuous gradients that satisfy Polyak – Lojasiewicz condition. Method does not need the value of $\mu^{PL}>0$ in the condition and converges linearly with a scale factor $\left(1 - \frac{\mu^{PL}}{M}\right)$. It was previously proved that method converges as $O\left(\frac1{k^2}\right)$ if a function is convex and has $M$-Lipschitz-continuous gradient and converges linearly with a~scale factor $\left(1 - \sqrt{\frac{\mu^{SC}}{M}}\right)$ if the value of strong convexity parameter $\mu^{SC}>0$ is known. The novelty is that one can save linear convergence if $\frac{\mu^{PL}}{\mu^{SC}}$ is not known, but without square root in the scale factor.
The second part presents modification of AGMsDR method for solving problems that allow alternating minimization (Alternating AGMsDR). The similar results are proved.
As the result, we present adaptive accelerated methods that converge as $O\left(\min\left\lbrace\frac{M}{k^2},\,\left(1-{\frac{\mu^{PL}}{M}}\right)^{(k-1)}\right\rbrace\right)$ on a class of convex functions with $M$-Lipschitz-continuous gradient that satisfy Polyak – Lojasiewicz condition. Algorithms do not need values of $M$ and $\mu^{PL}$. If Polyak – Lojasiewicz condition does not hold, the convergence is $O\left(\frac1{k^2}\right)$, but no tuning needed.
We also consider the adaptive catalyst envelope of non-accelerated gradient methods. The envelope allows acceleration up to $O\left(\frac1{k^2}\right)$. We present numerical comparison of non-accelerated adaptive gradient descent which is accelerated using adaptive catalyst envelope with AGMsDR, Alternating AGMsDR, APDAGD (Adaptive Primal-Dual Accelerated Gradient Descent) and Sinkhorn's algorithm on the problem dual to the optimal transport problem.
Conducted experiments show faster convergence of alternating AGMsDR in comparison with described catalyst approach and AGMsDR, despite the same asymptotic rate $O\left(\frac1{k^2}\right)$. Such behavior can be explained by linear convergence of AGMsDR method and was tested on quadratic functions. Alternating AGMsDR demonstrated better performance in comparison with AGMsDR.
-
Approximate methods of studying dynamics of market structure
Computer Research and Modeling, 2012, v. 4, no. 1, pp. 219-229Views (last year): 3. Citations: 9 (RSCI).An approach to computation of open-loop optimal Nash–Cournot strategies in dynamical games which is based on the Z-transform method and factorization is proposed. The main advantage of the proposed approach is that it permits to overcome the problems of instability of economic indicators of oligopolies arising when generalized Riccati equations are used.
-
Changepoint detection on financial data using deep learning approach
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 555-575The purpose of this study is to develop a methodology for change points detection in time series, including financial data. The theoretical basis of the study is based on the pieces of research devoted to the analysis of structural changes in financial markets, description of the proposed algorithms for detecting change points and peculiarities of building classical and deep machine learning models for solving this type of problems. The development of such tools is of interest to investors and other stakeholders, providing them with additional approaches to the effective analysis of financial markets and interpretation of available data.
To address the research objective, a neural network was trained. In the course of the study several ways of training sample formation were considered, differing in the nature of statistical parameters. In order to improve the quality of training and obtain more accurate results, a methodology for feature generation was developed for the formation of features that serve as input data for the neural network. These features, in turn, were derived from an analysis of mathematical expectations and standard deviations of time series data over specific intervals. The potential for combining these features to achieve more stable results is also under investigation.
The results of model experiments were analyzed to compare the effectiveness of the proposed model with other existing changepoint detection algorithms that have gained widespread usage in practical applications. A specially generated dataset, developed using proprietary methods, was utilized as both training and testing data. Furthermore, the model, trained on various features, was tested on daily data from the S&P 500 index to assess its effectiveness in a real financial context.
As the principles of the model’s operation are described, possibilities for its further improvement are considered, including the modernization of the proposed model’s structure, optimization of training data generation, and feature formation. Additionally, the authors are tasked with advancing existing concepts for real-time changepoint detection.
-
Multicriterial metric data analysis in human capital modelling
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1223-1245The article describes a model of a human in the informational economy and demonstrates the multicriteria optimizational approach to the metric analysis of model-generated data. The traditional approach using the identification and study involves the model’s identification by time series and its further prediction. However, this is not possible when some variables are not explicitly observed and only some typical borders or population features are known, which is often the case in the social sciences, making some models pure theoretical. To avoid this problem, we propose a method of metric data analysis (MMDA) for identification and study of such models, based on the construction and analysis of the Kolmogorov – Shannon metric nets of the general population in a multidimensional space of social characteristics. Using this method, the coefficients of the model are identified and the features of its phase trajectories are studied. In this paper, we are describing human according to his role in information processing, considering his awareness and cognitive abilities. We construct two lifetime indices of human capital: creative individual (generalizing cognitive abilities) and productive (generalizing the amount of information mastered by a person) and formulate the problem of their multi-criteria (two-criteria) optimization taking into account life expectancy. This approach allows us to identify and economically justify the new requirements for the education system and the information environment of human existence. It is shown that the Pareto-frontier exists in the optimization problem, and its type depends on the mortality rates: at high life expectancy there is one dominant solution, while for lower life expectancy there are different types of Paretofrontier. In particular, the Pareto-principle applies to Russia: a significant increase in the creative human capital of an individual (summarizing his cognitive abilities) is possible due to a small decrease in the creative human capital (summarizing awareness). It is shown that the increase in life expectancy makes competence approach (focused on the development of cognitive abilities) being optimal, while for low life expectancy the knowledge approach is preferable.
-
Regularization and acceleration of Gauss – Newton method
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1829-1840We propose a family of Gauss –Newton methods for solving optimization problems and systems of nonlinear equations based on the ideas of using the upper estimate of the norm of the residual of the system of nonlinear equations and quadratic regularization. The paper presents a development of the «Three Squares Method» scheme with the addition of a momentum term to the update rule of the sought parameters in the problem to be solved. The resulting scheme has several remarkable properties. First, the paper algorithmically describes a whole parametric family of methods that minimize functionals of a special kind: compositions of the residual of a nonlinear equation and an unimodal functional. Such a functional, entirely consistent with the «gray box» paradigm in the problem description, combines a large number of solvable problems related to applications in machine learning, with the regression problems. Secondly, the obtained family of methods is described as a generalization of several forms of the Levenberg –Marquardt algorithm, allowing implementation in non-Euclidean spaces as well. The algorithm describing the parametric family of Gauss –Newton methods uses an iterative procedure that performs an inexact parametrized proximal mapping and shift using a momentum term. The paper contains a detailed analysis of the efficiency of the proposed family of Gauss – Newton methods; the derived estimates take into account the number of external iterations of the algorithm for solving the main problem, the accuracy and computational complexity of the local model representation and oracle computation. Sublinear and linear convergence conditions based on the Polak – Lojasiewicz inequality are derived for the family of methods. In both observed convergence regimes, the Lipschitz property of the residual of the nonlinear system of equations is locally assumed. In addition to the theoretical analysis of the scheme, the paper studies the issues of its practical implementation. In particular, in the experiments conducted for the suboptimal step, the schemes of effective calculation of the approximation of the best step are given, which makes it possible to improve the convergence of the method in practice in comparison with the original «Three Square Method». The proposed scheme combines several existing and frequently used in practice modifications of the Gauss –Newton method, in addition, the paper proposes a monotone momentum modification of the family of developed methods, which does not slow down the search for a solution in the worst case and demonstrates in practice an improvement in the convergence of the method.
-
Optimal control of bank investment as a factorof economic stability
Computer Research and Modeling, 2012, v. 4, no. 4, pp. 959-967Views (last year): 5.This paper presents a model of replenishment of bank liquidity by additional income of banks. Given the methodological basis for the necessity for bank stabilization funds to cover losses during the economy crisis. An econometric derivation of the equations describing the behavior of the bank financial and operating activity performed. In accordance with the purpose of creating a stabilization fund introduces an optimality criterion used controls. Based on the equations of the behavior of the bank by the method of dynamic programming is derived a vector of optimal controls.
-
An automated system for program parameters fine tuning in the cloud
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 587-592The paper presents a software system aimed at finding best (in some sense) parameters of an algorithm. The system handles both discrete and continuous parameters and employs massive parallelism offered by public clouds. The paper presents an overview of the system, a method to measure algorithm's performance in the cloud and numerical results of system's use on several problem sets.
-
Query optimization in relational database systems and cloud computing technology
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 649-655Views (last year): 1.Optimization is the heart of relational Database Management System (DMBS). Its can analyzes the SQL statements and determines the most efficient access plan to satisfy every query request. Optimization can solves this problem and analyzes SQL statements specifying which tables and columns are available. And then request the information system and statistical data stored in the system directory, to determine the best method of solving the tasks required to comply with the query requests.
-
Pre-decomposition of discrete optimization problems to speed up the branch and bound method in a distributed computing environment
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 719-725The paper presents an implementation of branch and bound algorithm employing coarse grained parallelism. The system is based on CBC (COIN-OR branch and cut) open-source MIP solver and inter-process communication capabilities of Erlang. Numerical results show noticeable speedup in comparison to single-threaded CBC instance.
Keywords: branch and bound algorithm, coarse grained parallelism.Views (last year): 2. Citations: 2 (RSCI). -
An implementation of a parallel global minimum search algorithm with an application to the ReaxFF molecular dynamic force field parameters optimization
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 745-752Views (last year): 1. Citations: 1 (RSCI).Molecular dynamic methods that use ReaxFF force field allow one to obtain sufficiently good results in simulating large multicomponent chemically reactive systems. Here is represented an algorithm of searching optimal parameters of molecular-dynamic force field ReaxFF for arbitrary chemical systems and its implementation. The method is based on the multidimensional technique of global minimum search suggested by R.G. Strongin. It has good scalability useful for running on distributed parallel computers.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




