All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Analytical Approximation of a Nonlinear Model for Pest Control in Coconut Trees by the Homotopy Analysis Method
Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1093-1106Rugose spiraling whitefly (RSW) is one of the major pests which affects the coconut trees. It feeds on the tree by sucking up the water content as well as the essential nutrients from leaves. It also forms sooty mold in leaves due to which the process of photosynthesis is inhibited. Biocontrol of pest is harmless for trees and crops. The experimental results in literature reveal that Pseudomallada astur is a potential predator for this pest. We investigate the dynamics of predator, Pseudomallada astur’s interaction with rugose spiralling whitefly, Aleurodicus rugioperculatus in coconut trees using a mathematical model. In this system of ordinary differential equation, the pest-predator interaction is modeled using Holling type III functional response. The parametric values are calculated from the experimental results and are tabulated. An approximate analytical solution for the system has been derived. The homotopy analysis method proves to be a suitable method for creating solutions that are valid even for moderate to large parameter values, hence we employ the same to solve this nonlinear model. The $\hbar$-curves, which give the admissible region of $\hbar$, are provided to validate the region of convergence. We have derived the approximate solution at fifth order and stopped at this order since we obtain a more approximate solution in this iteration. Numerical simulation is obtained through MATLAB. The analytical results are compared with numerical simulation and are found to be in good agreement. The biological interpretation of figures implies that the use of a predator reduces the whitefly’s growth to a greater extent.
-
Analysing the impact of migration on background social strain using a continuous social stratification model
Computer Research and Modeling, 2022, v. 14, no. 3, pp. 661-673The background social strain of a society can be quantitatively estimated using various statistical indicators. Mathematical models, allowing to forecast the dynamics of social strain, are successful in describing various social processes. If the number of interacting groups is small, the dynamics of the corresponding indicators can be modelled with a system of ordinary differential equations. The increase in the number of interacting components leads to the growth of complexity, which makes the analysis of such models a challenging task. A continuous social stratification model can be considered as a result of the transition from a discrete number of interacting social groups to their continuous distribution in some finite interval. In such a model, social strain naturally spreads locally between neighbouring groups, while in reality, the social elite influences the whole society via news media, and the Internet allows non-local interaction between social groups. These factors, however, can be taken into account to some extent using the term of the model, describing negative external influence on the society. In this paper, we develop a continuous social stratification model, describing the dynamics of two societies connected through migration. We assume that people migrate from the social group of donor society with the highest strain level to poorer social layers of the acceptor society, transferring the social strain at the same time. We assume that all model parameters are constants, which is a realistic assumption for small societies only. By using the finite volume method, we construct the spatial discretization for the problem, capable of reproducing finite propagation speed of social strain. We verify the discretization by comparing the results of numerical simulations with the exact solutions of the auxiliary non-linear diffusion equation. We perform the numerical analysis of the proposed model for different values of model parameters, study the impact of migration intensity on the stability of acceptor society, and find the destabilization conditions. The results, obtained in this work, can be used in further analysis of the model in the more realistic case of inhomogeneous coefficients.
-
Nonlinear modeling of oscillatory viscoelastic fluid with variable viscosity: a comparative analysis of dual solutions
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 409-431The viscoelastic fluid flow model across a porous medium has captivated the interest of many contemporary researchers due to its industrial and technical uses, such as food processing, paper and textile coating, packed bed reactors, the cooling effect of transpiration and the dispersion of pollutants through aquifers. This article focuses on the influence of variable viscosity and viscoelasticity on the magnetohydrodynamic oscillatory flow of second-order fluid through thermally radiating wavy walls. A mathematical model for this fluid flow, including governing equations and boundary conditions, is developed using the usual Boussinesq approximation. The governing equations are transformed into a system of nonlinear ordinary differential equations using non-similarity transformations. The numerical results obtained by applying finite-difference code based on the Lobatto IIIa formula generated by bvp4c solver are compared to the semi-analytical solutions for the velocity, temperature and concentration profiles obtained using the homotopy perturbation method (HPM). The effect of flow parameters on velocity, temperature, concentration profiles, skin friction coefficient, heat and mass transfer rate, and skin friction coefficient is examined and illustrated graphically. The physical parameters governing the fluid flow profoundly affected the resultant flow profiles except in a few cases. By using the slope linear regression method, the importance of considering the viscosity variation parameter and its interaction with the Lorentz force in determining the velocity behavior of the viscoelastic fluid model is highlighted. The percentage increase in the velocity profile of the viscoelastic model has been calculated for different ranges of viscosity variation parameters. Finally, the results are validated numerically for the skin friction coefficient and Nusselt number profiles.
-
Population waves and their bifurcations in a model “active predator – passive prey”
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 831-843Our purpose is to study the spatio-temporal population wave behavior observed in the predator-prey system. It is assumed that predators move both directionally and randomly, and prey spread only diffusely. The model does not take into account demographic processes in the predator population; it’s total number is constant and is a parameter. The variables of the model are the prey and predator densities and the predator speed, which are connected by a system of three reaction – diffusion – advection equations. The system is considered on an annular range, that is the periodic conditions are set at the boundaries of the interval. We have studied the bifurcations of wave modes arising in the system when two parameters are changed — the total number of predators and their taxis acceleration coefficient.
The main research method is a numerical analysis. The spatial approximation of the problem in partial derivatives is performed by the finite difference method. Integration of the obtained system of ordinary differential equations in time is carried out by the Runge –Kutta method. The construction of the Poincare map, calculation of Lyapunov exponents, and Fourier analysis are used for a qualitative analysis of dynamic regimes.
It is shown that, population waves can arise as a result of existence of directional movement of predators. The population dynamics in the system changes qualitatively as the total predator number increases. А stationary homogeneous regime is stable at low value of parameter, then it is replaced by self-oscillations in the form of traveling waves. The waveform becomes more complicated as the bifurcation parameter increases; its complexity occurs due to an increase in the number of temporal vibrational modes. A large taxis acceleration coefficient leads to the possibility of a transition from multi-frequency to chaotic and hyperchaotic population waves. A stationary regime without preys becomes stable with a large number of predators.
-
Investigation of the averaged model of coked catalyst oxidative regeneration
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 149-161The article is devoted to the construction and investigation of an averaged mathematical model of an aluminum-cobalt-molybdenum hydrocracking catalyst oxidative regeneration. The oxidative regeneration is an effective means of restoring the activity of the catalyst when its granules are coating with coke scurf.
The mathematical model of this process is a nonlinear system of ordinary differential equations, which includes kinetic equations for reagents’ concentrations and equations for changes in the temperature of the catalyst granule and the reaction mixture as a result of isothermal reactions and heat transfer between the gas and the catalyst layer. Due to the heterogeneity of the oxidative regeneration process, some of the equations differ from the standard kinetic ones and are based on empirical data. The article discusses the scheme of chemical interaction in the regeneration process, which the material balance equations are compiled on the basis of. It reflects the direct interaction of coke and oxygen, taking into account the degree of coverage of the coke granule with carbon-hydrogen and carbon-oxygen complexes, the release of carbon monoxide and carbon dioxide during combustion, as well as the release of oxygen and hydrogen inside the catalyst granule. The change of the radius and, consequently, the surface area of coke pellets is taken into account. The adequacy of the developed averaged model is confirmed by an analysis of the dynamics of the concentrations of substances and temperature.
The article presents a numerical experiment for a mathematical model of oxidative regeneration of an aluminum-cobalt-molybdenum hydrocracking catalyst. The experiment was carried out using the Kutta–Merson method. This method belongs to the methods of the Runge–Kutta family, but is designed to solve stiff systems of ordinary differential equations. The results of a computational experiment are visualized.
The paper presents the dynamics of the concentrations of substances involved in the oxidative regeneration process. A conclusion on the adequacy of the constructed mathematical model is drawn on the basis of the correspondence of the obtained results to physicochemical laws. The heating of the catalyst granule and the release of carbon monoxide with a change in the radius of the granule for various degrees of initial coking are analyzed. There are a description of the results.
In conclusion, the main results and examples of problems which can be solved using the developed mathematical model are noted.
-
Numerical-analytical modeling of gravitational lensing of the electromagnetic waves in random-inhomogeneous space plasma
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 433-443Instrument of numerical-analytical modeling of characteristics of propagation of electromagnetic waves in chaotic space plasma with taking into account effects of gravitation is developed for interpretation of data of measurements of astrophysical precision instruments of new education. The task of propagation of waves in curved (Riemann’s) space is solved in Euclid’s space by introducing of the effective index of refraction of vacuum. The gravitational potential can be calculated for various model of distribution of mass of astrophysical objects and at solution of Poisson’s equation. As a result the effective index of refraction of vacuum can be evaluated. Approximate model of the effective index of refraction is suggested with condition that various objects additively contribute in total gravitational field. Calculation of the characteristics of electromagnetic waves in the gravitational field of astrophysical objects is performed by the approximation of geometrical optics with condition that spatial scales of index of refraction a lot more wavelength. Light differential equations in Euler’s form are formed the basis of numerical-analytical instrument of modeling of trajectory characteristic of waves. Chaotic inhomogeneities of space plasma are introduced by model of spatial correlation function of index of refraction. Calculations of refraction scattering of waves are performed by the approximation of geometrical optics. Integral equations for statistic moments of lateral deviations of beams in picture plane of observer are obtained. Integrals for moments are reduced to system of ordinary differential equations the firsts order with using analytical transformations for cooperative numerical calculation of arrange and meansquare deviations of light. Results of numerical-analytical modeling of trajectory picture of propagation of electromagnetic waves in interstellar space with taking into account impact of gravitational fields of space objects and refractive scattering of waves on inhomogeneities of index of refraction of surrounding plasma are shown. Based on the results of modeling quantitative estimation of conditions of stochastic blurring of the effect of gravitational lensing of electromagnetic waves at various frequency ranges is performed. It’s shown that operating frequencies of meter range of wavelengths represent conditional low-frequency limit for observational of the effect of gravitational lensing in stochastic space plasma. The offered instrument of numerical-analytical modeling can be used for analyze of structure of electromagnetic radiation of quasar propagating through group of galactic.
-
Modeling the impact of epidemic spread and lockdown on economy
Computer Research and Modeling, 2025, v. 17, no. 2, pp. 339-363Epidemics severely destabilize economies by reducing productivity, weakening consumer spending, and overwhelming public infrastructure, often culminating in economic recessions. The COVID-19 pandemic underscored the critical role of nonpharmaceutical interventions, such as lockdowns, in containing infectious disease transmission. This study investigates how the progression of epidemics and the implementation of lockdown policies shape the economic well-being of populations. By integrating compartmental ordinary differential equation (ODE) models, the research analyzes the interplay between epidemic dynamics and economic outcomes, particularly focusing on how varying lockdown intensities influence both disease spread and population wealth. Findings reveal that epidemics inflict significant economic damage, but timely and stringent lockdowns can mitigate healthcare system overload by sharply reducing infection peaks and delaying the epidemic’s trajectory. However, carefully timed lockdown relaxation is equally vital to prevent resurgent outbreaks. The study identifies key epidemiological thresholds—such as transmission rates, recovery rates, and the basic reproduction number $(\mathfrak{R}0)$ — that determine the effectiveness of lockdowns. Analytically, it pinpoints the optimal proportion of isolated individuals required to minimize total infections in scenarios where permanent immunity is assumed. Economically, the analysis quantifies lockdown impacts by tracking population wealth, demonstrating that economic outcomes depend heavily on the fraction of isolated individuals who remain economically productive. Higher proportions of productive individuals during lockdowns correlate with better wealth retention, even under fixed epidemic conditions. These insights equip policymakers with actionable frameworks to design balanced lockdown strategies that curb disease spread while safeguarding economic stability during future health crises.
-
Modeling of calcium dynamics in soil organic layers
Computer Research and Modeling, 2010, v. 2, no. 1, pp. 103-110Views (last year): 1.Calcium is a major nutrient regulating metabolism in a plant. Deficiency of calcium results in a growth decline of plant tissues. Ca may be lost from forest soils due to acidic atmospheric deposition and tree harvesting. Plant-available calcium compounds are in the soil cation exchange complex and soil waters. Model of soil calcium dynamics linking it with the model of soil organic matter dynamics ROMUL in forest ecosystems is developed. ROMUL describes the mineralization and humification of the fraction of fresh litter which is further transformed into complex of partially humified substance (CHS) and then to stable humus (H) in dependence on temperature, soil moisture and chemical composition of the fraction (nitrogen, lignin and ash contents, pH). Rates of decomposition and humification being coefficients in the system of ordinary differential equations are evaluated using laboratory experiments and verified on a set of field experiments. Model of soil calcium dynamics describes calcium flows between pools of soil organic matter. Outputs are plant nutrition, leaching, synthesis of secondary minerals. The model describes transformation and mineralization of forest floor in detail. Experimental data for calibration model was used from spruсe forest of Bulgaria.
-
Identification of a mathematical model and research of the various modes of methanogenesis in mesophilic environments
Computer Research and Modeling, 2012, v. 4, no. 1, pp. 131-141Views (last year): 10. Citations: 10 (RSCI).A mathematical model for the production of biogas from animal waste was developed. An algorithm for identification of model parameters was developed. The accuracy of model identification was performed. The result of simulation for batch and continuous modes of supply of substrate was shown. The optimum flow rate of the substrate for continuous operation was found.
-
Numerical method for finding Nash and Shtakelberg equilibria in river water quality control models
Computer Research and Modeling, 2020, v. 12, no. 3, pp. 653-667In this paper we consider mathematical model to control water quality. We study a system with two-level hierarchy: one environmental organization (supervisor) at the top level and a few industrial enterprises (agents) at the lower level. The main goal of the supervisor is to keep water pollution level below certain value, while enterprises pollute water, as a side effect of the manufacturing process. Supervisor achieves its goal by charging a penalty for enterprises. On the other hand, enterprises choose how much to purify their wastewater to maximize their income.The fee increases the budget of the supervisor. Moreover, effulent fees are charged for the quantity and/or quality of the discharged pollution. Unfortunately, in practice, such charges are ineffective due to the insufficient tax size. The article solves the problem of determining the optimal size of the charge for pollution discharge, which allows maintaining the quality of river water in the rear range.
We describe system members goals with target functionals, and describe water pollution level and enterprises state as system of ordinary differential equations. We consider the problem from both supervisor and enterprises sides. From agents’ point a normal-form game arises, where we search for Nash equilibrium and for the supervisor, we search for Stackelberg equilibrium. We propose numerical algorithms for finding both Nash and Stackelberg equilibrium. When we construct Nash equilibrium, we solve optimal control problem using Pontryagin’s maximum principle. We construct Hamilton’s function and solve corresponding system of partial differential equations with shooting method and finite difference method. Numerical calculations show that the low penalty for enterprises results in increasing pollution level, when relatively high penalty can result in enterprises bankruptcy. This leads to the problem of choosing optimal penalty, which requires considering problem from the supervisor point. In that case we use the method of qualitatively representative scenarios for supervisor and Pontryagin’s maximum principle for agents to find optimal control for the system. At last, we compute system consistency ratio and test algorithms for different data. The results show that a hierarchical control is required to provide system stability.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




