All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Additive regularizarion of topic models with fast text vectorizartion
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1515-1528The probabilistic topic model of a text document collection finds two matrices: a matrix of conditional probabilities of topics in documents and a matrix of conditional probabilities of words in topics. Each document is represented by a multiset of words also called the “bag of words”, thus assuming that the order of words is not important for revealing the latent topics of the document. Under this assumption, the problem is reduced to a low-rank non-negative matrix factorization governed by likelihood maximization. In general, this problem is ill-posed having an infinite set of solutions. In order to regularize the solution, a weighted sum of optimization criteria is added to the log-likelihood. When modeling large text collections, storing the first matrix seems to be impractical, since its size is proportional to the number of documents in the collection. At the same time, the topical vector representation (embedding) of documents is necessary for solving many text analysis tasks, such as information retrieval, clustering, classification, and summarization of texts. In practice, the topical embedding is calculated for a document “on-the-fly”, which may require dozens of iterations over all the words of the document. In this paper, we propose a way to calculate a topical embedding quickly, by one pass over document words. For this, an additional constraint is introduced into the model in the form of an equation, which calculates the first matrix from the second one in linear time. Although formally this constraint is not an optimization criterion, in fact it plays the role of a regularizer and can be used in combination with other regularizers within the additive regularization framework ARTM. Experiments on three text collections have shown that the proposed method improves the model in terms of sparseness, difference, logLift and coherence measures of topic quality. The open source libraries BigARTM and TopicNet were used for the experiments.
-
Describing processes in photosynthetic reaction center ensembles using a Monte Carlo kinetic model
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1207-1221Photosynthetic apparatus of a plant cell consists of multiple photosynthetic electron transport chains (ETC). Each ETC is capable of capturing and utilizing light quanta, that drive electron transport along the chain. Light assimilation efficiency depends on the plant’s current physiological state. The energy of the part of quanta that cannot be utilized, dissipates into heat, or is emitted as fluorescence. Under high light conditions fluorescence levels gradually rise to the maximum level. The curve describing that rise is called fluorescence rise (FR). It has a complex shape and that shape changes depending on the photosynthetic apparatus state. This gives one the opportunity to investigate that state only using the non invasive measuring of the FR.
When measuring fluorescence in experimental conditions, we get a response from millions of photosynthetic units at a time. In order to reproduce the probabilistic nature of the processes in a photosynthetic ETC, we created a Monte Carlo model of this chain. This model describes an ETC as a sequence of electron carriers in a thylakoid membrane, connected with each other. Those carriers have certain probabilities of capturing light photons, transferring excited states, or reducing each other, depending on the current ETC state. The events that take place in each of the model photosynthetic ETCs are registered, accumulated and used to create fluorescence rise and electron carrier redox states accumulation kinetics. This paper describes the model structure, the principles of its operation and the relations between certain model parameters and the resulting kinetic curves shape. Model curves include photosystem II reaction center fluorescence rise and photosystem I reaction center redox state change kinetics under different conditions.
-
Connection between discrete financial models and continuous models with Wiener and Poisson processes
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 781-795The paper is devoted to the study of relationships between discrete and continuous models financial processes and their probabilistic characteristics. First, a connection is established between the price processes of stocks, hedging portfolio and options in the models conditioned by binomial perturbations and their limit perturbations of the Brownian motion type. Secondly, analogues in the coefficients of stochastic equations with various random processes, continuous and jumpwise, and in the coefficients corresponding deterministic equations for their probabilistic characteristics. Statement of the results on the connections and finding analogies, obtained in this paper, led to the need for an adequate presentation of preliminary information and results from financial mathematics, as well as descriptions of related objects of stochastic analysis. In this paper, partially new and known results are presented in an accessible form for those who are not specialists in financial mathematics and stochastic analysis, and for whom these results are important from the point of view of applications. Specifically, the following sections are presented.
• In one- and n-period binomial models, it is proposed a unified approach to determining on the probability space a risk-neutral measure with which the discounted option price becomes a martingale. The resulting martingale formula for the option price is suitable for numerical simulation. In the following sections, the risk-neutral measures approach is applied to study financial processes in continuous-time models.
• In continuous time, models of the price of shares, hedging portfolios and options are considered in the form of stochastic equations with the Ito integral over Brownian motion and over a compensated Poisson process. The study of the properties of these processes in this section is based on one of the central objects of stochastic analysis — the Ito formula. Special attention is given to the methods of its application.
• The famous Black – Scholes formula is presented, which gives a solution to the partial differential equation for the function $v(t, x)$, which, when $x = S (t)$ is substituted, where $S(t)$ is the stock price at the moment time $t$, gives the price of the option in the model with continuous perturbation by Brownian motion.
• The analogue of the Black – Scholes formula for the case of the model with a jump-like perturbation by the Poisson process is suggested. The derivation of this formula is based on the technique of risk-neutral measures and the independence lemma.
-
Fast and accurate x86 disassembly using a graph convolutional network model
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1779-1792Disassembly of stripped x86 binaries is an important yet non-trivial task. Disassembly is difficult to perform correctly without debug information, especially on x86 architecture, which has variablesized instructions interleaved with data. Moreover, the presence of indirect jumps in binary code adds another layer of complexity. Indirect jumps impede the ability of recursive traversal, a common disassembly technique, to successfully identify all instructions within the code. Consequently, disassembling such code becomes even more intricate and demanding, further highlighting the challenges faced in this field. Many tools, including commercial ones such as IDA Pro, struggle with accurate x86 disassembly. As such, there has been some interest in developing a better solution using machine learning (ML) techniques. ML can potentially capture underlying compiler-independent patterns inherent for the compiler-generated assembly. Researchers in this area have shown that it is possible for ML approaches to outperform the classical tools. They also can be less timeconsuming to develop compared to manual heuristics, shifting most of the burden onto collecting a big representative dataset of executables with debug information. Following this line of work, we propose an improvement of an existing RGCN-based architecture, which builds control and flow graph on superset disassembly. The enhancement comes from augmenting the graph with data flow information. In particular, in the embedding we add Jump Control Flow and Register Dependency edges, inspired by Probabilistic Disassembly. We also create an open-source x86 instruction identification dataset, based on a combination of ByteWeight dataset and a selection open-source Debian packages. Compared to IDA Pro, a state of the art commercial tool, our approach yields better accuracy, while maintaining great performance on our benchmarks. It also fares well against existing machine learning approaches such as DeepDi.
-
Probabilistic-statistical model of insurance capital
Computer Research and Modeling, 2012, v. 4, no. 1, pp. 231-235The article reveals the necessity of introduction of new economic category such as “insurance capital”. Insurance activity generates a specific kind of capital (as a production factor) – the guarantee fund, which is called “primary insurance monetary capital". The article establishes that, due to its probabilistic and statistical nature, the insurance capital has a number of specific features in addition to conventional characteristics of capital as a production factor. Basing on probabilistic-statistical model author investigates the role of insurance capital in the formation of price for insurance services. In particular, the author exposes that the law of diminishing returns is not universal when talking about insurance capital.
Keywords: insurance capital, law of diminishing returns.Views (last year): 1. Citations: 2 (RSCI). -
Estimation of probabilistic model of employee labor process
Computer Research and Modeling, 2012, v. 4, no. 4, pp. 969-975Views (last year): 1.The mathematical estimation model for employee labor process, built on the basis of Bayesian network is presented in the article. The great attention is given to the estimation of qualitative characteristics of labor product. Usage of described model is supposed in the companies with the management employee workflows system.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




