Результаты поиска по 'process':
Найдено статей: 448
  1. Bernadotte A., Mazurin A.D.
    Optimization of the brain command dictionary based on the statistical proximity criterion in silent speech recognition task
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 675-690

    In our research, we focus on the problem of classification for silent speech recognition to develop a brain– computer interface (BCI) based on electroencephalographic (EEG) data, which will be capable of assisting people with mental and physical disabilities and expanding human capabilities in everyday life. Our previous research has shown that the silent pronouncing of some words results in almost identical distributions of electroencephalographic signal data. Such a phenomenon has a suppressive impact on the quality of neural network model behavior. This paper proposes a data processing technique that distinguishes between statistically remote and inseparable classes in the dataset. Applying the proposed approach helps us reach the goal of maximizing the semantic load of the dictionary used in BCI.

    Furthermore, we propose the existence of a statistical predictive criterion for the accuracy of binary classification of the words in a dictionary. Such a criterion aims to estimate the lower and the upper bounds of classifiers’ behavior only by measuring quantitative statistical properties of the data (in particular, using the Kolmogorov – Smirnov method). We show that higher levels of classification accuracy can be achieved by means of applying the proposed predictive criterion, making it possible to form an optimized dictionary in terms of semantic load for the EEG-based BCIs. Furthermore, using such a dictionary as a training dataset for classification problems grants the statistical remoteness of the classes by taking into account the semantic and phonetic properties of the corresponding words and improves the classification behavior of silent speech recognition models.

  2. Sofronova E.A., Diveev A.I., Kazaryan D.E., Konstantinov S.V., Daryina A.N., Seliverstov Y.A., Baskin L.A.
    Utilizing multi-source real data for traffic flow optimization in CTraf
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 147-159

    The problem of optimal control of traffic flow in an urban road network is considered. The control is carried out by varying the duration of the working phases of traffic lights at controlled intersections. A description of the control system developed is given. The control system enables the use of three types of control: open-loop, feedback and manual. In feedback control, road infrastructure detectors, video cameras, inductive loop and radar detectors are used to determine the quantitative characteristics of current traffic flow state. The quantitative characteristics of the traffic flows are fed into a mathematical model of the traffic flow, implemented in the computer environment of an automatic traffic flow control system, in order to determine the moments for switching the working phases of the traffic lights. The model is a system of finite-difference recurrent equations and describes the change in traffic flow on each road section at each time step, based on retrived data on traffic flow characteristics in the network, capacity of maneuvers and flow distribution through alternative maneuvers at intersections. The model has scaling and aggregation properties. The structure of the model depends on the structure of the graph of the controlled road network. The number of nodes in the graph is equal to the number of road sections in the considered network. The simulation of traffic flow changes in real time makes it possible to optimally determine the duration of traffic light operating phases and to provide traffic flow control with feedback based on its current state. The system of automatic collection and processing of input data for the model is presented. In order to model the states of traffic flow in the network and to solve the problem of optimal traffic flow control, the CTraf software package has been developed, a brief description of which is given in the paper. An example of the solution of the optimal control problem of traffic flows on the basis of real data in the road network of Moscow is given.

  3. Matveev A.V.
    Mathematical features of individual dosimetric planning of radioiodotherapy based on pharmacokinetic modeling
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 773-784

    When determining therapeutic absorbed doses in the process of radioiodine therapy, the method of individual dosimetric planning is increasingly used in Russian medicine. However, for the successful implementation of this method, it is necessary to have appropriate software that allows modeling the pharmacokinetics of radioiodine in the patient’s body and calculate the necessary therapeutic activity of a radiopharmaceutical drug to achieve the planned therapeutic absorbed dose in the thyroid gland.

    Purpose of the work: development of a software package for pharmacokinetic modeling and calculation of individual absorbed doses in radioiodine therapy based on a five-chamber model of radioiodine kinetics using two mathematical optimization methods. The work is based on the principles and methods of RFLP pharmacokinetics (chamber modeling). To find the minimum of the residual functional in identifying the values of the transport constants of the model, the Hook – Jeeves method and the simulated annealing method were used. Calculation of dosimetric characteristics and administered therapeutic activity is based on the method of calculating absorbed doses using the functions of radioiodine activity in the chambers found during modeling. To identify the parameters of the model, the results of radiometry of the thyroid gland and urine of patients with radioiodine introduced into the body were used.

    A software package for modeling the kinetics of radioiodine during its oral intake has been developed. For patients with diffuse toxic goiter, the transport constants of the model were identified and individual pharmacokinetic and dosimetric characteristics (elimination half-lives, maximum thyroid activity and time to reach it, absorbed doses to critical organs and tissues, administered therapeutic activity) were calculated. The activity-time relationships for all cameras in the model are obtained and analyzed. A comparative analysis of the calculated pharmacokinetic and dosimetric characteristics calculated using two mathematical optimization methods was performed. Evaluation completed the stunning-effect and its contribution to the errors in calculating absorbed doses. From a comparative analysis of the pharmacokinetic and dosimetric characteristics calculated in the framework of two optimization methods, it follows that the use of a more complex mathematical method for simulating annealing in a software package does not lead to significant changes in the values of the characteristics compared to the simple Hook – Jeeves method. Errors in calculating absorbed doses in the framework of these mathematical optimization methods do not exceed the spread of absorbed dose values from the stunning-effect.

  4. Khruschev S.S., Fursova P.V., Plusnina T.Yu., Riznichenko G.Yu., Rubin A.B.
    Analysis of the rate of electron transport through photosynthetic cytochrome $b_6 f$ complex
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 997-1022

    We consider an approach based on linear algebra methods to analyze the rate of electron transport through the cytochrome $b_6 f$ complex. In the proposed approach, the dependence of the quasi-stationary electron flux through the complex on the degree of reduction of pools of mobile electron carriers is considered a response function characterizing this process. We have developed software in the Python programming language that allows us to construct the master equation for the complex according to the scheme of elementary reactions and calculate quasi-stationary electron transport rates through the complex and the dynamics of their changes during the transition process. The calculations are performed in multithreaded mode, which makes it possible to efficiently use the resources of modern computing systems and to obtain data on the functioning of the complex in a wide range of parameters in a relatively short time. The proposed approach can be easily adapted for the analysis of electron transport in other components of the photosynthetic and respiratory electron-transport chain, as well as other processes in multienzyme complexes containing several reaction centers. Cryo-electron microscopy and redox titration data were used to parameterize the model of cytochrome $b_6 f$ complex. We obtained dependences of the quasi-stationary rate of plastocyanin reduction and plastoquinone oxidation on the degree of reduction of pools of mobile electron carriers and analyzed the dynamics of rate changes in response to changes in the redox state of the plastoquinone pool. The modeling results are in good agreement with the available experimental data.

  5. Yumaganov A.S., Agafonov A.A., Myasnikov V.V.
    Reinforcement learning-based adaptive traffic signal control invariant to traffic signal configuration
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1253-1269

    In this paper, we propose an adaptive traffic signal control method invariant to the configuration of the traffic signal. The proposed method uses one neural network model to control traffic signals of various configurations, differing both in the number of controlled lanes and in the used traffic light control cycle (set of phases). To describe the state space, both dynamic information about the current state of the traffic flow and static data about the configuration of a controlled intersection are used. To increase the speed of model training and reduce the required amount of data required for model convergence, it is proposed to use an “expert” who provides additional data for model training. As an expert, we propose to use an adaptive control method based on maximizing the weighted flow of vehicles through an intersection. Experimental studies of the effectiveness of the developed method were carried out in a microscopic simulation software package. The obtained results confirmed the effectiveness of the proposed method in different simulation scenarios. The possibility of using the developed method in a simulation scenario that is not used in the training process was shown. We provide a comparison of the proposed method with other baseline solutions, including the method used as an “expert”. In most scenarios, the developed method showed the best results by average travel time and average waiting time criteria. The advantage over the method used as an expert, depending on the scenario under study, ranged from 2% to 12% according to the criterion of average vehicle waiting time and from 1% to 7% according to the criterion of average travel time.

  6. Sadovykh A., Ivanov V.
    Enhancing DevSecOps with continuous security requirements analysis and testing
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1687-1702

    The fast-paced environment of DevSecOps requires integrating security at every stage of software development to ensure secure, compliant applications. Traditional methods of security testing, often performed late in the development cycle, are insufficient to address the unique challenges of continuous integration and continuous deployment (CI/CD) pipelines, particularly in complex, high-stakes sectors such as industrial automation. In this paper, we propose an approach that automates the analysis and testing of security requirements by embedding requirements verification into the CI/CD pipeline. Our method employs the ARQAN tool to map high-level security requirements to Security Technical Implementation Guides (STIGs) using semantic search, and RQCODE to formalize these requirements as code, providing testable and enforceable security guidelines.We implemented ARQAN and RQCODE within a CI/CD framework, integrating them with GitHub Actions for realtime security checks and automated compliance verification. Our approach supports established security standards like IEC 62443 and automates security assessment starting from the planning phase, enhancing the traceability and consistency of security practices throughout the pipeline. Evaluation of this approach in collaboration with an industrial automation company shows that it effectively covers critical security requirements, achieving automated compliance for 66.15% of STIG guidelines relevant to the Windows 10 platform. Feedback from industry practitioners further underscores its practicality, as 85% of security requirements mapped to concrete STIG recommendations, with 62% of these requirements having matching testable implementations in RQCODE. This evaluation highlights the approach’s potential to shift security validation earlier in the development process, contributing to a more resilient and secure DevSecOps lifecycle.

  7. Varshavsky L.E.
    Modeling the impact of sanctions and import substitution on market performance
    Computer Research and Modeling, 2025, v. 17, no. 2, pp. 365-380

    The article considers an approach to modeling the impact of sanctions and import substitution on the performance of high-tech product markets based on the use of control theory methods (operational calculus, z-transform). The model under consideration assumes that an equipment manufacturer supplies unique high-tech equipment to a high-tech product (HP) manufacturer that dominates the equipment consumer market. The HP manufacturer, fearing disruption of equipment supplies due to the introduction of all kinds of restrictions and sanctions, invests in the development of import-substituting equipment production in a third company, which can also find application in the external market, at the expense of deductions from its profits. The influence of the following factors and actions on the performance of the conditional market is analyzed: 1) the degree of inertia of the development and production development processes in the company; 2) the share of equipment of the import-substituting company supplied to the HP manufacturer; 3) sanctions (general and selective) on the supply of equipment to the company-manufacturer of the import substitution, as well as blocking the import substitution process in the third company by the first company.

    The calculations show that the acceleration of the equipment development and production processes leads to a faster decrease in the production volumes of the first company. At the same time, an increase in price is observed, which is associated with a change in the parameters of the inverse demand function.

    An increase in the share of equipment of the import-substituting company consumed by the second company can lead to a sharp increase in production volumes in the second and third companies, stabilization of production volumes in the first company and an increase in price.

    The introduction of sanctions leads to a decrease in the production volumes and income of all companies relative to the baseline version. A significant change in price also occurs. However, due to the inertia of the equipment production processes in the example under consideration, a significant change in production volumes in the aggregate of companies occurs with a significant lag. This is especially characteristic of the third company, in which a noticeable deviation from the baseline version begins after 20 years. The blocking by the first equipment manufacturing company of investments in the development of import substitution in the third company ensures a relatively small gain for the first company in production volumes and NPV although allows to raise her market share.

  8. Zhdanova O.L., Kolbina E.A., Frisman E.Y.
    Evolutionary effects of non-selective sustainable harvesting in a genetically heterogeneous population
    Computer Research and Modeling, 2025, v. 17, no. 4, pp. 717-735

    The problem of harvest optimization remains a central challenge in mathematical biology. The concept of Maximum Sustainable Yield (MSY), widely used in optimal exploitation theory, proposes maintaining target populations at levels ensuring maximum reproduction, theoretically balancing economic benefits with resource conservation. While MSYbased management promotes population stability and system resilience, it faces significant limitations due to complex intrapopulation structures and nonlinear dynamics in exploited species. Of particular concern are the evolutionary consequences of harvesting, as artificial selection may drive changes divergent from natural selection pressures. Empirical evidence confirms that selective harvesting alters behavioral traits, reduces offspring quality, and modifies population gene pools. In contrast, the genetic impacts of non-selective harvesting remain poorly understood and require further investigation.

    This study examines how non-selective harvesting with constant removal rates affects evolution in genetically heterogeneous populations. We model genetic diversity controlled by a single diallelic locus, where different genotypes dominate at high/low densities: r-strategists (high fecundity) versus K-strategists (resource-limited resilience). The classical ecological and genetic model with discrete time is considered. The model assumes that the fitness of each genotype linearly depends on the population size. By including the harvesting withdrawal coefficient, the model allows for linking the problem of optimizing harvest with the that of predicting genotype selection.

    Analytical results demonstrate that under MSY harvesting the equilibrium genetic composition remains unchanged while population size halves. The type of genetic equilibrium may shift, as optimal harvest rates differ between equilibria. Natural K-strategist dominance may reverse toward r-strategists, whose high reproduction compensates for harvest losses. Critical harvesting thresholds triggering strategy shifts were identified.

    These findings explain why exploited populations show slow recovery after harvesting cessation: exploitation reinforces adaptations beneficial under removal pressure but maladaptive in natural conditions. For instance, captive arctic foxes select for high-productivity genotypes, whereas wild populations favor lower-fecundity/higher-survival phenotypes. This underscores the necessity of incorporating genetic dynamics into sustainable harvesting management strategies, as MSY policies may inadvertently alter evolutionary trajectories through density-dependent selection processes. Recovery periods must account for genetic adaptation timescales in management frameworks.

  9. Pak S.Y., Abakumov A.I.
    Model study of gas exchange processes in phytoplankton under the influence of photosynthetic processes and metabolism
    Computer Research and Modeling, 2025, v. 17, no. 5, pp. 963-985

    The dynamics of various gaseous substances is of great importance in the vital activity of phytoplankton. The dynamics of oxygen and carbon dioxide are the most indicative for aquatic plant communities. These dynamics are important for the global ratio of oxygen and carbon dioxide in the Earth’s atmosphere. The goal of the work is to use the mathematical modeling to study the role of oxygen and carbon dioxide in the life of aquatic plant organisms, in particular, the phytoplankton. The series of mathematical models of the dynamics of oxygen and carbon dioxide in the phytoplankton body are proposed. The series of models are built according to the increasing degree of complexity and the number of modeled processes. At first, the simplest model of only gas dynamics is considered, then there is a transition to models with the interaction and mutual influence of gases on the formation and dynamics of energy-intensive substances and on growth processes in the plant organism. Photosynthesis and respiration are considered as the basis of the models. The models study the properties of solutions: equilibrium solutions and their stability, dynamic properties of solutions. Various types of equilibrium stability, possible complex non-linear dynamics have been identified. These properties allow better orientation when choosing a model to describe processes with a known set of data and formulated modeling goals. An example of comparing an experiment with its model description is given. The next goal of modeling — to link gas dynamics for oxygen and carbon dioxide with metabolic processes in plant organisms. In the future, model designs will be applied to the analysis of ecosystem behavior when the habitat changes, including the content of gaseous substances.

  10. Kolobov A.V., Polezhaev A.A.
    Influence of random malignant cell motility on growing tumor front stability
    Computer Research and Modeling, 2009, v. 1, no. 2, pp. 225-232

    Chemotaxis plays an important role in morphogenesis and processes of structure formation in nature. Both unicellular organisms and single cells in tissue demonstrate this property. In vitro experiments show that many types of transformed cell, especially metastatic competent, are capable for directed motion in response usually to chemical signal. There is a number of theoretical papers on mathematical modeling of tumour growth and invasion using Keller-Segel model for the chemotactic motility of cancer cells. One of the crucial questions for using the chemotactic term in modelling of tumour growth is a lack of reliable quantitative estimation of its parameters. The 2-D mathematical model of tumour growth and invasion, which takes into account only random cell motility and convective fluxes in compact tissue, has showed that due to competitive mechanism tumour can grow toward sources of nutrients in absence of chemotactic cell motility.

    Views (last year): 5. Citations: 7 (RSCI).
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"