Результаты поиска по 'products':
Найдено статей: 125
  1. Gorbachev O.G.
    Probabilistic-statistical model of insurance capital
    Computer Research and Modeling, 2012, v. 4, no. 1, pp. 231-235

    The article reveals the necessity of introduction of new economic category such as “insurance capital”. Insurance activity generates a specific kind of capital (as a production factor) – the guarantee fund, which is called “primary insurance monetary capital". The article establishes that, due to its probabilistic and statistical nature, the insurance capital has a number of specific features in addition to conventional characteristics of capital as a production factor. Basing on probabilistic-statistical model author investigates the role of insurance capital in the formation of price for insurance services. In particular, the author exposes that the law of diminishing returns is not universal when talking about insurance capital.

    Views (last year): 1. Citations: 2 (RSCI).
  2. Kamenev G.K., Kamenev I.G.
    Multicriterial metric data analysis in human capital modelling
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1223-1245

    The article describes a model of a human in the informational economy and demonstrates the multicriteria optimizational approach to the metric analysis of model-generated data. The traditional approach using the identification and study involves the model’s identification by time series and its further prediction. However, this is not possible when some variables are not explicitly observed and only some typical borders or population features are known, which is often the case in the social sciences, making some models pure theoretical. To avoid this problem, we propose a method of metric data analysis (MMDA) for identification and study of such models, based on the construction and analysis of the Kolmogorov – Shannon metric nets of the general population in a multidimensional space of social characteristics. Using this method, the coefficients of the model are identified and the features of its phase trajectories are studied. In this paper, we are describing human according to his role in information processing, considering his awareness and cognitive abilities. We construct two lifetime indices of human capital: creative individual (generalizing cognitive abilities) and productive (generalizing the amount of information mastered by a person) and formulate the problem of their multi-criteria (two-criteria) optimization taking into account life expectancy. This approach allows us to identify and economically justify the new requirements for the education system and the information environment of human existence. It is shown that the Pareto-frontier exists in the optimization problem, and its type depends on the mortality rates: at high life expectancy there is one dominant solution, while for lower life expectancy there are different types of Paretofrontier. In particular, the Pareto-principle applies to Russia: a significant increase in the creative human capital of an individual (summarizing his cognitive abilities) is possible due to a small decrease in the creative human capital (summarizing awareness). It is shown that the increase in life expectancy makes competence approach (focused on the development of cognitive abilities) being optimal, while for low life expectancy the knowledge approach is preferable.

  3. Gadzhiev R.I.
    Estimation of probabilistic model of employee labor process
    Computer Research and Modeling, 2012, v. 4, no. 4, pp. 969-975

    The mathematical estimation model for employee labor process, built on the basis of Bayesian network is presented in the article. The great attention is given to the estimation of qualitative characteristics of labor product. Usage of described model is supposed in the companies with the management employee workflows system.

    Views (last year): 1.
  4. Reed R.G., Cox M.A., Wrigley T., Mellado B.
    A CPU benchmarking characterization of ARM based processors
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 581-586

    Big science projects are producing data at ever increases rates. Typical techniques involve storing the data to disk, after minor filtering, and then processing it in large computer farms. Data production has reached a point where on-line processing is required in order to filter the data down to manageable sizes. A potential solution involves using low-cost, low-power ARM processors in large arrays to provide massive parallelisation for data stream computing (DSC). The main advantage in using System on Chips (SoCs) is inherent in its design philosophy. SoCs are primarily used in mobile devices and hence consume less power while maintaining relatively good performance. A benchmarking characterisation of three different models of ARM processors will be presented.

    Views (last year): 1.
  5. Sukhoroslov O.V., Rubtsov A.O., Volkov S.Yu.
    Development of distributed computing applications and services with Everest cloud platform
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 593-599

    The use of service-oriented approach in scientific domains can increase research productivity by enabling sharing, publication and reuse of computing applications, as well as automation of scientific workflows. Everest is a cloud platform that enables researchers with minimal skills to publish and use scientific applications as services. In contrast to existing solutions, Everest executes applications on external resources attached by users, implements flexible binding of resources to applications and supports programmatic access to the platform's functionality. The paper presents current state of the platform, recent developments and remaining challenges.

    Views (last year): 6. Citations: 2 (RSCI).
Pages: « first previous

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"