Результаты поиска по 'random process':
Найдено статей: 42
  1. Skripalenko M.N., Skripalenko M.M., Tran Ba Hui , Ashuhmin D.A., Samusev S.V., Sidorov A.A.
    Detection of influence of upper working roll’s vibrayion on thickness of sheet at cold rolling with the help of DEFORM-3D software
    Computer Research and Modeling, 2017, v. 9, no. 1, pp. 111-116

    Technical diagnosis’ current trends are connected to application of FEM computer simulation, which allows, to some extent, replace real experiments, reduce costs for investigation and minimize risks. Computer simulation, just at the stage of research and development, allows carrying out of diagnostics of equipment to detect permissible fluctuations of parameters of equipment’s work. Peculiarity of diagnosis of rolling equipment is that functioning of rolling equipment is directly tied with manufacturing of product with required quality, including accuracy. At that design of techniques of technical diagnosis and diagnostical modelling is very important. Computer simulation of cold rolling of strip was carried out. At that upper working roll was doing vibrations in horizontal direction according with published data of experiments on continuous 1700 rolling mill. Vibration of working roll in a stand appeared due to gap between roll’s craft and guide in a stand and led to periodical fluctuations of strip’s thickness. After computer simulation with the help of DEFORM software strip with longitudinal and transversal thickness variation was gotten. Visualization of strip’s geometrical parameters, according with simulation data, corresponded to type of inhomogeneity of surface of strip rolled in real. Further analysis of thickness variation was done in order to identify, on the basis of simulation, sources of periodical components of strip’s thickness, whose reasons are malfunctions of equipment. Advantage of computer simulation while searching the sources of forming of thickness variation is that different hypothesis concerning thickness formations may be tested without conducting real experiments and costs of different types may be reduced. Moreover, while simulation, initial strip’s thickness will not have fluctuations as opposed to industrial or laboratorial experiments. On the basis of spectral analysis of random process, it was established that frequency of changing of strip’s thickness after rolling in one stand coincides with frequency of working roll’s vibration. Results of computer simulation correlate with results of the researches for 1700 mill. Therefore, opportunity to apply computer simulation to find reasons of formation of thickness variation of strip on the industrial rolling mill is shown.

    Views (last year): 12. Citations: 1 (RSCI).
  2. Govorukhin V.N., Zagrebneva A.D.
    Population waves and their bifurcations in a model “active predator – passive prey”
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 831-843

    Our purpose is to study the spatio-temporal population wave behavior observed in the predator-prey system. It is assumed that predators move both directionally and randomly, and prey spread only diffusely. The model does not take into account demographic processes in the predator population; it’s total number is constant and is a parameter. The variables of the model are the prey and predator densities and the predator speed, which are connected by a system of three reaction – diffusion – advection equations. The system is considered on an annular range, that is the periodic conditions are set at the boundaries of the interval. We have studied the bifurcations of wave modes arising in the system when two parameters are changed — the total number of predators and their taxis acceleration coefficient.

    The main research method is a numerical analysis. The spatial approximation of the problem in partial derivatives is performed by the finite difference method. Integration of the obtained system of ordinary differential equations in time is carried out by the Runge –Kutta method. The construction of the Poincare map, calculation of Lyapunov exponents, and Fourier analysis are used for a qualitative analysis of dynamic regimes.

    It is shown that, population waves can arise as a result of existence of directional movement of predators. The population dynamics in the system changes qualitatively as the total predator number increases. А stationary homogeneous regime is stable at low value of parameter, then it is replaced by self-oscillations in the form of traveling waves. The waveform becomes more complicated as the bifurcation parameter increases; its complexity occurs due to an increase in the number of temporal vibrational modes. A large taxis acceleration coefficient leads to the possibility of a transition from multi-frequency to chaotic and hyperchaotic population waves. A stationary regime without preys becomes stable with a large number of predators.

  3. Lukyantsev D.S., Afanasiev N.T., Tanaev A.B., Chudaev S.O.
    Numerical-analytical modeling of gravitational lensing of the electromagnetic waves in random-inhomogeneous space plasma
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 433-443

    Instrument of numerical-analytical modeling of characteristics of propagation of electromagnetic waves in chaotic space plasma with taking into account effects of gravitation is developed for interpretation of data of measurements of astrophysical precision instruments of new education. The task of propagation of waves in curved (Riemann’s) space is solved in Euclid’s space by introducing of the effective index of refraction of vacuum. The gravitational potential can be calculated for various model of distribution of mass of astrophysical objects and at solution of Poisson’s equation. As a result the effective index of refraction of vacuum can be evaluated. Approximate model of the effective index of refraction is suggested with condition that various objects additively contribute in total gravitational field. Calculation of the characteristics of electromagnetic waves in the gravitational field of astrophysical objects is performed by the approximation of geometrical optics with condition that spatial scales of index of refraction a lot more wavelength. Light differential equations in Euler’s form are formed the basis of numerical-analytical instrument of modeling of trajectory characteristic of waves. Chaotic inhomogeneities of space plasma are introduced by model of spatial correlation function of index of refraction. Calculations of refraction scattering of waves are performed by the approximation of geometrical optics. Integral equations for statistic moments of lateral deviations of beams in picture plane of observer are obtained. Integrals for moments are reduced to system of ordinary differential equations the firsts order with using analytical transformations for cooperative numerical calculation of arrange and meansquare deviations of light. Results of numerical-analytical modeling of trajectory picture of propagation of electromagnetic waves in interstellar space with taking into account impact of gravitational fields of space objects and refractive scattering of waves on inhomogeneities of index of refraction of surrounding plasma are shown. Based on the results of modeling quantitative estimation of conditions of stochastic blurring of the effect of gravitational lensing of electromagnetic waves at various frequency ranges is performed. It’s shown that operating frequencies of meter range of wavelengths represent conditional low-frequency limit for observational of the effect of gravitational lensing in stochastic space plasma. The offered instrument of numerical-analytical modeling can be used for analyze of structure of electromagnetic radiation of quasar propagating through group of galactic.

  4. Makarov I.S., Bagantsova E.R., Iashin P.A., Kovaleva M.D., Zakharova E.M.
    Development of and research into a rigid algorithm for analyzing Twitter publications and its influence on the movements of the cryptocurrency market
    Computer Research and Modeling, 2023, v. 15, no. 1, pp. 157-170

    Social media is a crucial indicator of the position of assets in the financial market. The paper describes the rigid solution for the classification problem to determine the influence of social media activity on financial market movements. Reputable crypto traders influencers are selected. Twitter posts packages are used as data. The methods of text, which are characterized by the numerous use of slang words and abbreviations, and preprocessing consist in lemmatization of Stanza and the use of regular expressions. A word is considered as an element of a vector of a data unit in the course of solving the problem of binary classification. The best markup parameters for processing Binance candles are searched for. Methods of feature selection, which is necessary for a precise description of text data and the subsequent process of establishing dependence, are represented by machine learning and statistical analysis. First, the feature selection is used based on the information criterion. This approach is implemented in a random forest model and is relevant for the task of feature selection for splitting nodes in a decision tree. The second one is based on the rigid compilation of a binary vector during a rough check of the presence or absence of a word in the package and counting the sum of the elements of this vector. Then a decision is made depending on the superiority of this sum over the threshold value that is predetermined previously by analyzing the frequency distribution of mentions of the word. The algorithm used to solve the problem was named benchmark and analyzed as a tool. Similar algorithms are often used in automated trading strategies. In the course of the study, observations of the influence of frequently occurring words, which are used as a basis of dimension 2 and 3 in vectorization, are described as well.

  5. Kolobov A.V., Polezhaev A.A.
    Influence of random malignant cell motility on growing tumor front stability
    Computer Research and Modeling, 2009, v. 1, no. 2, pp. 225-232

    Chemotaxis plays an important role in morphogenesis and processes of structure formation in nature. Both unicellular organisms and single cells in tissue demonstrate this property. In vitro experiments show that many types of transformed cell, especially metastatic competent, are capable for directed motion in response usually to chemical signal. There is a number of theoretical papers on mathematical modeling of tumour growth and invasion using Keller-Segel model for the chemotactic motility of cancer cells. One of the crucial questions for using the chemotactic term in modelling of tumour growth is a lack of reliable quantitative estimation of its parameters. The 2-D mathematical model of tumour growth and invasion, which takes into account only random cell motility and convective fluxes in compact tissue, has showed that due to competitive mechanism tumour can grow toward sources of nutrients in absence of chemotactic cell motility.

    Views (last year): 5. Citations: 7 (RSCI).
  6. Temlyakova E.A., Sorokin A.A.
    Detection of promoter and non-promoter E.coli sequences by analysis of their electrostatic profiles
    Computer Research and Modeling, 2015, v. 7, no. 2, pp. 347-359

    The article is devoted to the idea of using physical properties of DNA instead of sequence along for the aspect of accurate search and annotation of various prokaryotic genomic regions. Particulary, the possibility to use electrostatic potential distribution around DNA sequence as a classifier for identification of a few functional DNA regions was demonstrated. A number of classification models was built providing discrimination of promoters and non-promoter regions (random sequences, coding regions and promoter-like sequences) with accuracy value about 83–85%. The most valueable regions for the discrimination were determined and expected to play a certain role in the process of DNA-recognition by RNA-polymerase.

    Views (last year): 3.
  7. Krasnov F.V., Smaznevich I.S., Baskakova E.N.
    Bibliographic link prediction using contrast resampling technique
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1317-1336

    The paper studies the problem of searching for fragments with missing bibliographic links in a scientific article using automatic binary classification. To train the model, we propose a new contrast resampling technique, the innovation of which is the consideration of the context of the link, taking into account the boundaries of the fragment, which mostly affects the probability of presence of a bibliographic links in it. The training set was formed of automatically labeled samples that are fragments of three sentences with class labels «without link» and «with link» that satisfy the requirement of contrast: samples of different classes are distanced in the source text. The feature space was built automatically based on the term occurrence statistics and was expanded by constructing additional features — entities (names, numbers, quotes and abbreviations) recognized in the text.

    A series of experiments was carried out on the archives of the scientific journals «Law enforcement review» (273 articles) and «Journal Infectology» (684 articles). The classification was carried out by the models Nearest Neighbors, RBF SVM, Random Forest, Multilayer Perceptron, with the selection of optimal hyperparameters for each classifier.

    Experiments have confirmed the hypothesis put forward. The highest accuracy was reached by the neural network classifier (95%), which is however not as fast as the linear one that showed also high accuracy with contrast resampling (91–94%). These values are superior to those reported for NER and Sentiment Analysis on comparable data. The high computational efficiency of the proposed method makes it possible to integrate it into applied systems and to process documents online.

  8. Makarov I.S., Bagantsova E.R., Iashin P.A., Kovaleva M.D., Gorbachev R.A.
    Development of and research on machine learning algorithms for solving the classification problem in Twitter publications
    Computer Research and Modeling, 2023, v. 15, no. 1, pp. 185-195

    Posts on social networks can both predict the movement of the financial market, and in some cases even determine its direction. The analysis of posts on Twitter contributes to the prediction of cryptocurrency prices. The specificity of the community is represented in a special vocabulary. Thus, slang expressions and abbreviations are used in posts, the presence of which makes it difficult to vectorize text data, as a result of which preprocessing methods such as Stanza lemmatization and the use of regular expressions are considered. This paper describes created simplest machine learning models, which may work despite such problems as lack of data and short prediction timeframe. A word is considered as an element of a binary vector of a data unit in the course of the problem of binary classification solving. Basic words are determined according to the frequency analysis of mentions of a word. The markup is based on Binance candlesticks with variable parameters for a more accurate description of the trend of price changes. The paper introduces metrics that reflect the distribution of words depending on their belonging to a positive or negative classes. To solve the classification problem, we used a dense model with parameters selected by Keras Tuner, logistic regression, a random forest classifier, a naive Bayesian classifier capable of working with a small sample, which is very important for our task, and the k-nearest neighbors method. The constructed models were compared based on the accuracy metric of the predicted labels. During the investigation we recognized that the best approach is to use models which predict price movements of a single coin. Our model deals with posts that mention LUNA project, which no longer exist. This approach to solving binary classification of text data is widely used to predict the price of an asset, the trend of its movement, which is often used in automated trading.

  9. Smolyak S.A.
    Valuation of machines at the random process of their degradation and premature sales
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 797-815

    The model of the process of using machinery and equipment is considered, which takes into account the probabilistic nature of the process of their operation and sale. It takes into account the possibility of random hidden failures, after which the condition of the machine deteriorates abruptly, as well as the randomly arising need for premature (before the end of its service life) sale of the machine, which requires, generally speaking, random time. The model is focused on assessing the market value and service life of machines in accordance with International Valuation Standards. Strictly speaking, the market value of a used machine depends on its technical condition, but in practice, appraisers only take into account its age, since generally accepted measures of the technical condition of machines do not yet exist. As a result, the market value of a used machine is assumed to be equal to the average market value of similar machines of the corresponding age. For these purposes, appraisers use coefficients that reflect the influence of the age of machines on their market value. Such coefficients are not always justified and do not take into account either the degradation of the machine or the probabilistic nature of the process of its use. The proposed model is based on the anticipation of benefits principle. In it, we characterize the state of the machine by the intensity of the benefits it brings. The machine is subjected to a complex Poisson failure process, and after failure its condition abruptly worsens and may even reach its limit. Situations also arise that preclude further use of the machine by its owner. In such situations, the owner puts the machine up for sale before the end of its service life (prematurely), and the sale requires a random timing. The model allows us to take into account the influence of such situations and construct an analytical relationship linking the market value of a machine with its condition, and calculate the average coefficients of change in the market value of machines with age. At the same time, it is also possible to take into account the influence of inflation and the scrap cost of the machine. We have found that the rate of prematurely sales has a significant impact on the cost of new and used machines. The model also allows us to take into account the influence of inflation and the scrap value of the machine. We have found that the rate of premature sales has a significant impact on the service life and market value of new and used machines. At the same time, the dependence of the market value of machines on age is largely determined by the coefficient of variation of the service life of the machines. The results obtained allow us to obtain more reasonable estimates of the market value of machines, including for the purposes of the system of national accounts.

  10. Malkov S.Yu., Davydova O.I.
    Modernization as a global process: the experience of mathematical modeling
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 859-873

    The article analyzes empirical data on the long-term demographic and economic dynamics of the countries of the world for the period from the beginning of the 19th century to the present. Population and GDP of a number of countries of the world for the period 1500–2016 were selected as indicators characterizing the long-term demographic and economic dynamics of the countries of the world. Countries were chosen in such a way that they included representatives with different levels of development (developed and developing countries), as well as countries from different regions of the world (North America, South America, Europe, Asia, Africa). A specially developed mathematical model was used for modeling and data processing. The presented model is an autonomous system of differential equations that describes the processes of socio-economic modernization, including the process of transition from an agrarian society to an industrial and post-industrial one. The model contains the idea that the process of modernization begins with the emergence of an innovative sector in a traditional society, developing on the basis of new technologies. The population is gradually moving from the traditional sector to the innovation sector. Modernization is completed when most of the population moves to the innovation sector.

    Statistical methods of data processing and Big Data methods, including hierarchical clustering were used. Using the developed algorithm based on the random descent method, the parameters of the model were identified and verified on the basis of empirical series, and the model was tested using statistical data reflecting the changes observed in developed and developing countries during the period of modernization taking place over the past centuries. Testing the model has demonstrated its high quality — the deviations of the calculated curves from statistical data are usually small and occur during periods of wars and economic crises. Thus, the analysis of statistical data on the long-term demographic and economic dynamics of the countries of the world made it possible to determine general patterns and formalize them in the form of a mathematical model. The model will be used to forecast demographic and economic dynamics in different countries of the world.

Pages: « first previous next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"