All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Global bifurcation analysis of a rational Holling system
Computer Research and Modeling, 2017, v. 9, no. 4, pp. 537-545Views (last year): 11.In this paper, we consider a quartic family of planar vector fields corresponding to a rational Holling system which models the dynamics of the populations of predators and their prey in a given ecological or biomedical system and which is a variation on the classical Lotka–Volterra system. For the latter system, the change of the prey density per unit of time per predator called the response function is proportional to the prey density. This means that there is no saturation of the predator when the amount of available prey is large. However, it is more realistic to consider a nonlinear and bounded response function, and in fact different response functions have been used in the literature to model the predator response. After algebraic transformations, the rational Holling system can be written in the form of a quartic dynamical system. To investigate the character and distribution of the singular points in the phase plane of the quartic system, we use our method the sense of which is to obtain the simplest (well-known) system by vanishing some parameters (usually field rotation parameters) of the original system and then to input these parameters successively one by one studying the dynamics of the singular points (both finite and infinite) in the phase plane. Using the obtained information on singular points and applying our geometric approach to the qualitative analysis, we study the limit cycle bifurcations of the quartic system. To control all of the limit cycle bifurcations, especially, bifurcations of multiple limit cycles, it is necessary to know the properties and combine the effects of all of the rotation parameters. It can be done by means of the Wintner–Perko termination principle stating that the maximal one-parameter family of multiple limit cycles terminates either at a singular point which is typically of the same multiplicity (cyclicity) or on a separatrix cycle which is also typically of the same multiplicity (cyclicity). Applying this principle, we prove that the quartic system (and the corresponding rational Holling system) can have at most two limit cycles surrounding one singular point.
-
Global bifurcation analysis of the Leslie – Gower system with additive Allee effect and Holling functional response
Computer Research and Modeling, 2025, v. 17, no. 1, pp. 125-138In this paper, we consider predator – prey models and carry out a global bifurcation analysis of the Leslie –Gower system with an additive Allee effect and a simplified Holling type III functional response, which models the dynamics of predator and prey populations in a given ecological or biomedical system. This system uses the most common mathematical form of expressing the Allee effect (or law) through the prey growth function. Allee’s law states that there is a very specific relationship between individual fitness to living conditions and the number or density of individuals of a given species, namely: with an increase in the population size, the ability to survive and reproductive ability also increases. After algebraic transformations, the rational Leslie –Gower system with additive Allee effect and simplified Holling type III functional response can be written as a quantic-sextic dynamical system, i. e., as a system with polynomials of the fifth and sixth degrees. Using information about its singular points and applying our bifurcation-geometric approach to qualitative analysis, we study global bifurcations of limit cycles of the quintic-sextic system. To control all limit cycle bifurcations, especially bifurcations of multiple limit cycles, it is necessary to know the properties and combine the actions of all parameters rotating the vector field of the system. This can be done using the Wintner – Perko termination principle, according to which a maximal one-parameter family of multiple limit cycles terminates either at a singular point, which typically has the same multiplicity (cyclicity), or at a separatrix cycle, which also typically has the same multiplicity (cyclicity). This principle is a consequence of the principle of natural termination which was stated for higher-dimensional dynamical systems by Wintner who studied one-parameter families of periodic orbits of the restricted three-body problem and proved that in the analytic case any oneparameter family of periodic orbits can be uniquely continued through any bifurcation except a period-doubling bifurcation. Applying the planar Wintner – Perko principle, we prove that if the cyclicity of the focus in the system under consideration is three, then the system can have at most three limit cycles surrounding one singular point.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"