Результаты поиска по 'robotics':
Найдено статей: 23
  1. The 3rd BRICS Mathematics Conference
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1015-1016
  2. Gaiko V.A., Savin S.I., Klimchik A.S.
    Global limit cycle bifurcations of a polynomial Euler–Lagrange–Liénard system
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 693-705

    In this paper, using our bifurcation-geometric approach, we study global dynamics and solve the problem of the maximum number and distribution of limit cycles (self-oscillating regimes corresponding to states of dynamical equilibrium) in a planar polynomial mechanical system of the Euler–Lagrange–Liйnard type. Such systems are also used to model electrical, ecological, biomedical and other systems, which greatly facilitates the study of the corresponding real processes and systems with complex internal dynamics. They are used, in particular, in mechanical systems with damping and stiffness. There are a number of examples of technical systems that are described using quadratic damping in second-order dynamical models. In robotics, for example, quadratic damping appears in direct-coupled control and in nonlinear devices, such as variable impedance (resistance) actuators. Variable impedance actuators are of particular interest to collaborative robotics. To study the character and location of singular points in the phase plane of the Euler–Lagrange–Liйnard polynomial system, we use our method the meaning of which is to obtain the simplest (well-known) system by vanishing some parameters (usually, field rotation parameters) of the original system and then to enter sequentially these parameters studying the dynamics of singular points in the phase plane. To study the singular points of the system, we use the classical Poincarй index theorems, as well as our original geometric approach based on the application of the Erugin twoisocline method which is especially effective in the study of infinite singularities. Using the obtained information on the singular points and applying canonical systems with field rotation parameters, as well as using the geometric properties of the spirals filling the internal and external regions of the limit cycles and applying our geometric approach to qualitative analysis, we study limit cycle bifurcations of the system under consideration.

  3. Bardin B.S., Rachkov A.A., Chekina E.A., Chekin A.M.
    On periodic modes of body motion along a horizontal rough plane, performed by moving two internal masses
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 17-34

    We consider a mechanical system consisting of a rigid body and two masses that move inside the body along mutually perpendicular guides. The body has a flat face, which rests on a horizontal rough plane. The masses move inside the body in a vertical plane according to a harmonic law with the same period. It is assumed that the friction forces arising in the area of contact between the body and the supporting plane are described by the classical model of dry Coulomb friction, and the parameters of the problem are chosen so that the body can perform translationally rectilinearly motion. This mechanical system can serve as the simplest model of a capsule robot moving on a solid surface by moving internal elements.

    We study the modes of motion of a body in which its velocity is periodic with a period equal to the period of motion of the internal masses. It is shown that if the body can starts to move from a state of rest by means of displacements of the masses, then for any permissible values of the problem parameters there is a periodic mode of motion. Depending on the parameter values, the nature of the periodic motion can be essentially different. In particular, both reversible and nonreversible driving modes are possible. In the non-reversion mode, the body moves in the same direction, and intervals of movement alternate with intervals of rest (body sticking). In the reversal mode, the body moves in both positive and negative directions over a time interval equal to one period. In this case, the body makes two stops during the period of movement. After stopping, the body either immediately continues moving in the opposite direction, or enters a sticking zone and rests for a finite period of time, and then stats moving in the opposite direction. It was also found that, at certain parameter values, a periodic reversal mode is possible, in which the body moves without sticking. A detailed classification of all possible types of periodic motion modes was carried out. Their complete qualitative description is given and the regions of their existence in the three-dimensional space of the parameters are constructed.

  4. Belotelov V.N., Daryina A.N.
    Tangent search method in time optimal problem for a wheeled mobile robot
    Computer Research and Modeling, 2025, v. 17, no. 3, pp. 401-421

    Searching optimal trajectory of motion is a complex problem that is investigated in many research studies. Most of the studies investigate methods that are applicable to such a problem in general, regardless of the model of the object. With such general approach, only numerical solution can be found. However, in some cases it is possible to find an optimal trajectory in a closed form. Current article considers a time optimal problem with state limitations for a wheeled mobile differential robot that moves on a horizontal plane. The mathematical model of motion is kinematic. The state constraints correspond to the obstacles on the plane defined as circles that need to be avoided during motion. The independent control inputs are the wheel speeds that are limited in absolute value. Such model is commonly used in problems where the transients are considered insignificant, for example, when controlling tracked or wheeled devices that move slowly, prioritizing traction power over speed. In the article it is shown that the optimal trajectory from the starting point to the finishing point in such kinematic approach is a sequence of straight segments of tangents to the obstacles and arcs of the circles that limit the obstacles. The geometrically shortest path between the start and the finish is also a sequence of straight lines and arcs, therefore the time-optimal trajectory corresponds to one of the local minima when searching for the shortest path. The article proposes a method of search for the time-optimal trajectory based on building a graph of possible trajectories, where the edges are the possible segments of the tajectory, and the vertices are the connections between them. The optimal path is sought using Dijkstra’s algorithm. The theoretical foundation of the method is given, and the results of computer investigation of the algorithm are provided.

  5. Ilyin V.D.
    Situational resource allocation: review of technologies for solving problems based on knowledge systems
    Computer Research and Modeling, 2025, v. 17, no. 4, pp. 543-566

    The article presents updated technologies for solving two classes of linear resource allocation problems with dynamically changing characteristics of situational management systems and awareness of experts (and/or trained robots). The search for solutions is carried out in an interactive mode of computational experiment using updatable knowledge systems about problems considered as constructive objects (in accordance with the methodology of formalization of knowledge about programmable problems created in the theory of S-symbols). The technologies are focused on implementation in the form of Internet services. The first class includes resource allocation problems solved by the method of targeted solution movement. The second is the problems of allocating a single resource in hierarchical systems, taking into account the priorities of expense items, which can be solved (depending on the specified mandatory and orienting requirements for the solution) either by the interval method of allocation (with input data and result represented by numerical segments), or by the targeted solution movement method. The problem statements are determined by requirements for solutions and specifications of their applicability, which are set by an expert based on the results of the portraits of the target and achieved situations analysis. Unlike well-known methods for solving resource allocation problems as linear programming problems, the method of targeted solution movement is insensitive to small data changes and allows to find feasible solutions when the constraint system is incompatible. In single-resource allocation technologies, the segmented representation of data and results allows a more adequate (compared to a point representation) reflection of the state of system resource space and increases the practical applicability of solutions. The technologies discussed in the article are programmatically implemented and used to solve the problems of resource basement for decisions, budget design taking into account the priorities of expense items, etc. The technology of allocating a single resource is implemented in the form of an existing online cost planning service. The methodological consistency of the technologies is confirmed by the results of comparison with known technologies for solving the problems under consideration.

  6. Fedina A.A., Nurgaliev A.I., Skvortsova D.A.
    Comparison of the results of using various evolution algorithms to solve the problem of route optimization of unmanned vehicles
    Computer Research and Modeling, 2022, v. 14, no. 1, pp. 45-62

    In this paper, a comparative analysis of the exact and heuristic algorithms presented by the method of branches and boundaries, genetic and ant algorithms, respectively, is carried out to find the optimal solution to the traveling salesman problem using the example of a courier robot. The purpose of the work is to determine the running time, the length of the obtained route and the amount of memory required for the program to work, using the method of branches and boundaries and evolutionary heuristic algorithms. Also, the most appropriate of the listed methods for use in the specified conditions is determined. This article uses the materials of the conducted research, implemented in the format of a computer program, the program code for which is implemented in Python. In the course of the study, a number of criteria for the applicability of algorithms were selected (the time of the program, the length of the constructed route and the amount of memory necessary for the program to work), the results of the algorithms were obtained under specified conditions and conclusions were drawn about the degree of expediency of using one or another algorithm in various specified conditions of the courier robot. During the study, it turned out that for a small number of points  $\leqslant10$, the method of branches and boundaries is the most preferable, since it finds the optimal solution faster. However, when calculating the route by this method, provided that the points increase by more than 10, the operating time increases exponentially. In this case, more effective results are obtained by a heuristic approach using a genetic and ant algorithm. At the same time, the ant algorithm is distinguished by solutions that are closest to the reference ones and with an increase of more than 16 points. Its relative disadvantage is the greatest resource intensity among the considered algorithms. The genetic algorithm gives similar results, but after increasing the points more than 16, the length of the found route increases relative to the reference one. The advantage of the genetic algorithm is its lower resource intensity compared to other algorithms.

    The practical significance of this article lies in the potential possibility of using the results obtained for the optimal solution of logistics problems by an automated system in various fields: warehouse logistics, transport logistics, «last mile» logistics, etc.

  7. Popov D.I., Klimchik A.S.
    Stiffness modeling for anthropomorphic robots
    Computer Research and Modeling, 2019, v. 11, no. 4, pp. 631-651

    In the work modeling method of anthropomorphic platforms is presented. An elastostatic stiffness model is used to determine positioning errors in the robot’s lower limbs. One of the main problems in achieving a fast and stable gait are deflections caused by the flexibility in the elements of the robot. This problem was solved using virtual joint modeling to predict stiffness and deformation caused by the robot weight and external forces.

    To simulate a robot in the single-support phase, the robot is represented as a serial kinematic chain with a base at the supporting leg point of contact and an end effector in the swing leg foot. In the double support phase robot modeled as a parallel manipulator with an end effector in the pelvis. In this work, two cases of stiffness modeling are used: taking into account the compliance of the links and joints and taking into account only the compliance of joints. In the last case, joint compliances also include part of the link compliances. The joint stiffness parameters have been identified for two anthropomorphic robots: a small platform and a full-sized AR-601M.

    Deflections maps were calculated using identified stiffness parameters and showing errors depending on the position of the robot end effector in the workspace. The errors in Z directions have maximum amplitude, due to the influence of the robot mass on its structure.

    Views (last year): 3.
  8. Borisova O.V., Borisov I.I., Nuzhdin K.A., Ledykov A.M., Kolyubin S.A.
    Computational design of closed-chain linkages: synthesis of ergonomic spine support module of exosuit
    Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1269-1280

    The article focuses on the problem of mechanisms’ co-design for robotic systems to perform adaptive physical interaction with an unstructured environment, including physical human robot interaction. The co-design means simultaneous optimization of mechanics and control system, ensuring optimal behavior and performance of the system. Mechanics optimization refers to the search for optimal structure, geometric parameters, mass distribution among the links and their compliance; control refers to the search for motion trajectories for mechanism’s joints. The paper presents a generalized method of structural-parametric synthesis of underactuated mechanisms with closed kinematics for robotic systems for various purposes, e. g., it was previously used for the co-design of fingers’ mechanisms for anthropomorphic gripper and legs’ mechanisms for galloping robots. The method implements the concept of morphological computation of control laws due to the features of mechanical design, minimizing the control effort from the algorithmic component of the control system, which reduces the requirements for the level of technical equipment and reduces energy consumption. In this paper, the proposed method is used to optimize the structure and geometric parameters of the passive mechanism of the back support module of an industrial exosuit. Human movements are diverse and non-deterministic when compared with the movements of autonomous robots, which complicates the design of wearable robotic devices. To reduce injuries, fatigue and increase the productivity of workers, the synthesized industrial exosuit should not only compensate for loads, but also not interfere with the natural human motions. To test the developed exosuit, kinematic datasets from motion capture of an entire human body during industrial operations were used. The proposed method of structural-parametric synthesis was used to improve the ergonomics of a wearable robotic device. Verification of the synthesized mechanism was carried out using simulation: the passive module of the back is attached to two geometric primitives that move the chest and pelvis of the exosuit operator in accordance with the motion capture data. The ergonomics of the back module is quantified by the distance between the joints connecting the upper and bottom parts of the exosuit; minimizing deviation from the average value corresponds to a lesser limitation of the operator’s movement, i. e. greater ergonomics. The article provides a detailed description of the method of structural-parametric synthesis, an example of synthesis of an exosuit module and the results of simulation.

  9. Klekovkin A.V., Karavaev Y.L., Kilin A.A., Nazarov A.V.
    The influence of tail fins on the speed of an aquatic robot driven by internal moving masses
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 869-882

    This paper describes the design of an aquatic robot moving on the surface of a fluid and driven by two internal moving masses. The body of the aquatic robot in cross section has the shape of a symmetrical airfoil with a sharp edge. In this prototype, two internal masses move in circles and are rotated by a single DC motor and a gear mechanism that transmits torque from the motor to each mass. Angular velocities of moving masses are used as a control action, and the developed kinematic scheme for transmitting rotation from the motor to the moving masses allows the rotation of two masses with equal angular velocities in magnitude, but with a different direction of rotation. It is also possible to install additional tail fins of various shapes and sizes on the body of this robot. Also in the work for this object, the equations of motion are presented, written in the form of Kirchhoff equations for the motion of a solid body in an ideal fluid, which are supplemented by terms of viscous resistance. A mathematical description of the additional forces acting on the flexible tail fin is presented. Experimental studies on the influence of various tail fins on the speed of motion in the fluid were carried out with the developed prototype of the robot. In this work, tail fins of the same shape and size were installed on the robot, while having different stiffness. The experiments were carried out in a pool with water, over which a camera was installed, on which video recordings of all the experiments were obtained. Next processing of the video recordings made it possible to obtain the object’s movements coordinates, as well as its linear and angular velocities. The paper shows the difference in the velocities developed by the robot when moving without a tail fin, as well as with tail fins having different stiffness. The comparison of the velocities developed by the robot, obtained in experimental studies, with the results of mathematical modeling of the system is given.

  10. Kilin A.A., Klenov A.I., Tenenev V.A.
    Controlling the movement of the body using internal masses in a viscous liquid
    Computer Research and Modeling, 2018, v. 10, no. 4, pp. 445-460

    This article is devoted to the study of self-propulsion of bodies in a fluid by the action of internal mechanisms, without changing the external shape of the body. The paper presents an overview of theoretical papers that justify the possibility of this displacement in ideal and viscous liquids.

    A special case of self-propulsion of a rigid body along the surface of a liquid is considered due to the motion of two internal masses along the circles. The paper presents a mathematical model of the motion of a solid body with moving internal masses in a three-dimensional formulation. This model takes into account the three-dimensional vibrations of the body during motion, which arise under the action of external forces-gravity force, Archimedes force and forces acting on the body, from the side of a viscous fluid.

    The body is a homogeneous elliptical cylinder with a keel located along the larger diagonal. Inside the cylinder there are two material point masses moving along the circles. The centers of the circles lie on the smallest diagonal of the ellipse at an equal distance from the center of mass.

    Equations of motion of the system (a body with two material points, placed in a fluid) are represented as Kirchhoff equations with the addition of external forces and moments acting on the body. The phenomenological model of viscous friction is quadratic in velocity used to describe the forces of resistance to motion in a fluid. The coefficients of resistance to movement were determined experimentally. The forces acting on the keel were determined by numerical modeling of the keel oscillations in a viscous liquid using the Navier – Stokes equations.

    In this paper, an experimental verification of the proposed mathematical model was carried out. Several series of experiments on self-propulsion of a body in a liquid by means of rotation of internal masses with different speeds of rotation are presented. The dependence of the average propagation velocity, the amplitude of the transverse oscillations as a function of the rotational speed of internal masses is investigated. The obtained experimental data are compared with the results obtained within the framework of the proposed mathematical model.

    Views (last year): 21. Citations: 2 (RSCI).
Pages: next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"