All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Population waves and their bifurcations in a model “active predator – passive prey”
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 831-843Our purpose is to study the spatio-temporal population wave behavior observed in the predator-prey system. It is assumed that predators move both directionally and randomly, and prey spread only diffusely. The model does not take into account demographic processes in the predator population; it’s total number is constant and is a parameter. The variables of the model are the prey and predator densities and the predator speed, which are connected by a system of three reaction – diffusion – advection equations. The system is considered on an annular range, that is the periodic conditions are set at the boundaries of the interval. We have studied the bifurcations of wave modes arising in the system when two parameters are changed — the total number of predators and their taxis acceleration coefficient.
The main research method is a numerical analysis. The spatial approximation of the problem in partial derivatives is performed by the finite difference method. Integration of the obtained system of ordinary differential equations in time is carried out by the Runge –Kutta method. The construction of the Poincare map, calculation of Lyapunov exponents, and Fourier analysis are used for a qualitative analysis of dynamic regimes.
It is shown that, population waves can arise as a result of existence of directional movement of predators. The population dynamics in the system changes qualitatively as the total predator number increases. А stationary homogeneous regime is stable at low value of parameter, then it is replaced by self-oscillations in the form of traveling waves. The waveform becomes more complicated as the bifurcation parameter increases; its complexity occurs due to an increase in the number of temporal vibrational modes. A large taxis acceleration coefficient leads to the possibility of a transition from multi-frequency to chaotic and hyperchaotic population waves. A stationary regime without preys becomes stable with a large number of predators.
-
The concentration of powerful acoustic beams in a viscoelastic medium with non-uniform distribution of the air cavities
Computer Research and Modeling, 2017, v. 9, no. 3, pp. 517-533Views (last year): 6.It is known that the sound speed in medium that contain highly compressible inclusions, e.g. air pores in an elastic medium or gas bubbles in the liquid may be significantly reduced compared to a homogeneous medium. Effective nonlinear parameter of medium, describing the manifestation of nonlinear effects, increases hundreds and thousands of times because of the large differences in the compressibility of the inclusions and the medium. Spatial change in the concentration of such inclusions leads to the variable local sound speed, which in turn calls the spatial-temporal redistribution of acoustic energy in the wave and the distortion of its temporal profiles and cross-section structure of bounded beams. In particular, focal areas can form. Under certain conditions, the sound channel is formed that provides waveguide propagation of acoustic signals in the medium with similar inclusions. Thus, it is possible to control spatial-temporal structure of acoustic waves with the introduction of highly compressible inclusions with a given spatial distribution and concentration. The aim of this work is to study the propagation of acoustic waves in a rubberlike material with non-uniform spatial air cavities. The main objective is the development of an adequate theory of such structurally inhomogeneous media, theory of propagation of nonlinear acoustic waves and beams in these media, the calculation of the acoustic fields and identify the communication parameters of the medium and inclusions with characteristics of propagating waves. In the work the evolutionary self-consistent equation with integro-differential term is obtained describing in the low-frequency approximation propagation of intense acoustic beams in a medium with highly compressible cavities. In this equation the secondary acoustic field is taken into account caused by the dynamics of the cavities oscillations. The method is developed to obtain exact analytical solutions for nonlinear acoustic field of the beam on its axis and to calculate the field in the focal areas. The obtained results are applied to theoretical modeling of a material with non-uniform distribution of strongly compressible inclusions.
-
Influence of the simplest type of multiparticle interactions on the example of a lattice model of an adsorption layer
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 445-458Self-organization of molecules on a solid surface is one of the promising directions for materials generation with unique magnetic, electrical, and optical properties. They can be widely used in fields such as electronics, optoelectronics, catalysis, and biology. However, the structure and physicochemical properties of adsorbed molecules are influenced by many parameters that must be taken into account when studying the self-organization of molecules. Therefore, the experimental study of such materials is expensive, and quite often it is difficult for various reasons. In such situations, it is advisable to use the mathematical modeling. One of the parameters in the considered adsorption systems is the multiparticle interaction, which is often not taken into account in simulations due to the complexity of the calculations. In this paper, we evaluated the influence of multiparticle interactions on the total energy of the system using the transfer-matrix method and the Materials Studio software package. The model of monocentric adsorption with nearest interactions on a triangular lattice was taken as the basis. Phase diagrams in the ground state were constructed and a number of thermodynamic characteristics (coverage $\theta$, entropy $S$, susceptibility $\xi$) were calculated at nonzero temperatures. The formation of all four ordered structures (lattice gas with $\theta=0$, $(\sqrt{3} \times \sqrt{3}) R30^{\circ}$ with $\theta = \frac{1}{3}$, $(\sqrt{3} \times \sqrt{3})R^{*}30^{\circ}$ with $\theta = \frac{2}{3}$ and densest phase with $\theta = 1$) in a system with only pairwise interactions, and the absence of the phase $(\sqrt{3}\times \sqrt{3}) R30^\circ$ when only three-body interactions are taken into account, were found. Using the example of an atomistic model of the trimesic acid adsorption layer by quantum mechanical methods we determined that in such a system the contribution of multiparticle interactions is 11.44% of the pair interactions energy. There are only quantitative differences at such values. The transition region from the $(\sqrt{3} \times \sqrt{3}) R^{*}30^\circ$ to the densest phase shifts to the right by 38.25% at $\frac{\varepsilon}{RT} = 4$ and to the left by 23.46% at $\frac{\varepsilon}{RT} = −2$.
-
Mathematical modeling of phase transitions during collective interaction of agents in a common thermal field
Computer Research and Modeling, 2025, v. 17, no. 5, pp. 1005-1028Collective behavior can serve as a mechanism of thermoregulation and play a key role in the joint survival of a group of organisms. In higher animals, such phenomena are usually the subject of study of biology since sudden transitions to collective behavior are difficult to differentiate from the psychological and social adaptation of animals. However, in this paper, we indicate several important examples when a flock of higher animals demonstrates phase transitions similar to known phenomena in liquids and gases. This issue can also be studied experimentally within the framework of synthetic systems consisting of self-propelled robots that act according to a certain given algorithm. Generalizing both of these cases, we consider the problem of phase transitions in a dense group of interacting selfpropelled agents. Within the framework of microscopic theory, we propose a mathematical model of the phenomenon, in which agents are represented as bodies interacting with each other in accordance with an effective potential of a special type, expressing the desire of agents to move in the direction of the gradient of the joint thermal field. We show that the number of agents in the group, the group power, is the control parameter of the problem. A discrete model with individual dynamics of agents reproduces most of the phenomena observed both in natural flocks of higher animals engaged in collective thermoregulation and in synthetic complex systems. A first-order phase transition is observed, which symbolizes a change in the aggregate state in a group of agents. One observes the self-assembly of the initial weakly structured mass of agents into dense quasi-crystalline structures. We demonstrate also that, with an increase in the group power, a second-order phase transition in the form of thermal convection can occur. It manifests in a sudden liquefaction of the group and a transition to vortex motion, which ensures more efficient energy consumption in the case of a synthetic system of interacting robots and the collective survival of all individuals in the case of natural animal flocks.With an increase in the group power, secondary bifurcations occur, the vortex structure in agent medium becomes more complicated.
-
Dynamics regimes of population with non-overlapping generations taking into account genetic and stage structures
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1165-1190This paper studies a model of a population with non-overlapping generations and density-dependent regulation of birth rate. The population breeds seasonally, and its reproductive potential is determined genetically. The model proposed combines an ecological dynamic model of a limited population with non-overlapping generations and microevolutionary model of its genetic structure dynamics for the case when adaptive trait of birth rate controlled by a single diallelic autosomal locus with allelomorphs A and a. The study showed the genetic composition of the population, namely, will it be polymorphic or monomorphic, is mainly determined by the values of the reproductive potentials of heterozygote and homozygotes. Moreover, the average reproductive potential of mature individuals and intensity of self-regulation processes determine population dynamics. In particularly, increasing the average value of the reproductive potential leads to destabilization of the dynamics of age group sizes. The intensity of self-regulation processes determines the nature of emerging oscillations, since scenario of stability loss of fixed points depends on the values of this parameter. It is shown that patterns of occurrence and evolution of cyclic dynamics regimes are mainly determined by the features of life cycle of individuals in population. The life cycle leading to existence of non-overlapping generation gives isolated subpopulations in different years, which results in the possibility of independent microevolution of these subpopulations and, as a result, the complex dynamics emergence of both stage structure and genetic one. Fixing various adaptive mutations will gradually lead to genetic (and possibly morphological) differentiation and to differences in the average reproductive potentials of subpopulations that give different values of equilibrium subpopulation sizes. Further evolutionary growth of reproductive potentials of limited subpopulations leads to their number fluctuations which can differ in both amplitude and phase.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




