All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Topology-based activity recognition: stratified manifolds and separability in sensor space
Computer Research and Modeling, 2025, v. 17, no. 5, pp. 829-850While working on activity recognition using wearable sensors for healthcare applications, the main issue arises in the classification of activities. When we attempt to classify activities like walking, sitting, or running from accelerometer and gyroscope data, the signals often overlap and noise complicates the classification process. The existing methods do not have solid mathematical foundations to handle this issue. We started with the standard magnitude approach where one can compute $m = \sqrt{a^2_1 + a^2_2 + a^2_3}$ from the accelerometer readings, but this approach failed because different activities ended up in overlapping regions. We therefore developed a different approach. Instead of collapsing the 6-dimensional sensor data into simple magnitudes, we keep all six dimensions and treat each activity as a rectangular box in this 6D space. We define these boxes using simple interval constraints. For example, walking occurs when the $x$-axis accelerometer reading is between $2$ and $4$, the $y$-axis reading is between $9$ and $10$, and so on. The key breakthrough is what we call a separability index $s = \frac{d_{\min}^{}}{\sigma}$ that determines how accurately the classification will work. Here dmin represents how far apart the activity boxes are, and $\sigma$ represents the amount of noise present. From this simple idea, we derive a mathematical formula $P(\text{error}) \leqslant (n-1)\exp\left(-\frac{s^2}8\right)$ that predicts the error rate even before initiating the experiment. We tested this on the standard UCI-HAR and WISDM datasets and achieved $86.1 %$ accuracy. The theoretical predictions matched the actual results within $3 %$. This approach outperforms the traditional magnitude methods by $30.6 %$ and explains why certain activities overlap with each other.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




