All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Identification of inhomogeneous matter by pulsed multienergy tomography methods
Computer Research and Modeling, 2025, v. 17, no. 4, pp. 621-639The article considers the mathematical aspects of the problem of identifying a multicomponent scattering medium based on pulsed multienergy X-ray irradiation data. X-ray diagnostics problems are of considerable interest from both theoretical and practical points of view, and radiographic methods are indispensable in non-destructive testing of products.
Within the framework of a mathematical model based on a non-stationary integro-differential equation of radiation transfer, the inverse problem of finding the attenuation coefficient for radiation known at the boundary of the region and the problem of identifying a substance based on the found values of the attenuation coefficient on a discrete set of irradiation energies of the medium are formulated.
A preliminary processing of a wide list of substances of interest in computed tomography was carried out to determine the possibility of their identification by an approximately specified radiation attenuation coefficient characterizing the medium. When analyzing the degree of proximity of substances in a certain norm, it was found that the set of all possible substances potentially contained in the medium is divided into a finite number of non-intersecting clusters. For a sufficiently short duration of the probing signal, the scattering component of the radiation leaving the medium is asymptotically small. This circumstance allows us to reduce the inverse problem for the radiation transfer equation to the problem of inverting the Radon transform from the attenuation coefficient. The possibility of unambiguous or partial identification of a substance by varying the duration of the probing pulse and the number of energy levels of irradiation of the medium is analyzed using numerical modeling methods on a specially developed digital phantom.
-
Deep learning analysis of intracranial EEG for recognizing drug effects and mechanisms of action
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 755-772Predicting novel drug properties is fundamental to polypharmacology, repositioning, and the study of biologically active substances during the preclinical phase. The use of machine learning, including deep learning methods, for the identification of drug – target interactions has gained increasing popularity in recent years.
The objective of this study was to develop a method for recognizing psychotropic effects and drug mechanisms of action (drug – target interactions) based on an analysis of the bioelectrical activity of the brain using artificial intelligence technologies.
Intracranial electroencephalographic (EEG) signals from rats were recorded (4 channels at a sampling frequency of 500 Hz) after the administration of psychotropic drugs (gabapentin, diazepam, carbamazepine, pregabalin, eslicarbazepine, phenazepam, arecoline, pentylenetetrazole, picrotoxin, pilocarpine, chloral hydrate). The signals were divided into 2-second epochs, then converted into $2000\times 4$ images and input into an autoencoder. The output of the bottleneck layer was subjected to classification and clustering using t-SNE, and then the distances between resulting clusters were calculated. As an alternative, an approach based on feature extraction with dimensionality reduction using principal component analysis and kernel support vector machine (kSVM) classification was used. Models were validated using 5-fold cross-validation.
The classification accuracy obtained for 11 drugs during cross-validation was $0.580 \pm 0.021$, which is significantly higher than the accuracy of the random classifier $(0.091 \pm 0.045, p < 0.0001)$ and the kSVM $(0.441 \pm 0.035, p < 0.05)$. t-SNE maps were generated from the bottleneck parameters of intracranial EEG signals. The relative proximity of the signal clusters in the parametric space was assessed.
The present study introduces an original method for biopotential-mediated prediction of effects and mechanism of action (drug – target interaction). This method employs convolutional neural networks in conjunction with a modified selective parameter reduction algorithm. Post-treatment EEGs were compressed into a unified parameter space. Using a neural network classifier and clustering, we were able to recognize the patterns of neuronal response to the administration of various psychotropic drugs.
-
Problems of numerical simulation in the dynamics system “soil–plant”
Computer Research and Modeling, 2020, v. 12, no. 2, pp. 445-465Modern mathematical models in the dynamics system “soil–plant” are considered. The components of this system are: agricultural plant, microorganisms of the rhizosphere (root zone of plants), the mineral nutrition elements of plants in their mobile and immobile forms. The model of submitted system based on the analysis of the adopted provisions was developed. The construction of system elements allows to display the coordinated dynamics of these elements among themselves. In particular, the dynamics of mineral nutrition elements in plants and the dynamics of their biomass are determined by the current contents in the rhizosphere of mineral fertilizers and organic origin substances (plant roots, leaves, etc.). The immobility of plants spatial distribution and the mobile spatial nature of microorganisms are assumed. This mechanism is determined by diffusion. Mutual relationships between weeds and pests are suggested. The dynamics of the mineral nutrition elements is determined by the peculiarity of sorption in the soil solution, environmental conditions, organic decomposition and fertilizer application. An analytical study for a system where each of the components is represented by only one species (fertilizer, the association of microorganisms and plants) was performed. An adaptation of the wave propagation model in the “resource–consumer” system (Kolmogorov–Petrovsky–Piskunov waves) has been developed for annual agricultural crops. The developed model has been adapted for the growth of Krasnoufimskaya-100 spring wheat in a vessel on peat lowland soil, where nitrogen, phosphorus, and potassium fertilizers were added variably. Sample distributions are plants biomass and the content of mineral nutrition elements in them. The parametric identification of the model and its adequacy was performed. An assessment of the model adequacy showed a good agreement between the model and experimental data.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




