All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Modeling the initial period of HIV-1 infection spread in the lymph node based on delay differential equations
Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1181-1203A mathematical model describing the dynamics of HIV-1 infection in a single lymph node during the initial period of infection development is presented. Within the framework of the model, the infection of an individual is set by a nonnegative finite function describing the rate of entry of the initial viral particles into the lymph node. The equations of the model are derived with consideration of two factors: 1) the interaction of viral particles with naive CD4+ T lymphocytes in various phases of the cell cycle; 2) contact interaction between multiplying naive CD4+ T lymphocytes and infected CD4+ T lymphocytes producing viral particles. The specific feature of intercellular contact interactions is the formation of complexes consisting of pairs of these cells. The duration of the complexes’ existence is determined by the distribution functions over finite time intervals. The model is presented as a high-dimensional system of nonlinear delay differential equations, including two equations with distributed delay, and is supplemented with non-negative initial data. In the absence of HIV-1 infection, the model is reduced to four delay differential equations describing the number of naive CD4+ T-lymphocytes in different phases of the cell cycle. The global solvability of the model (the existence and uniqueness of the solution on the semi-axis) is determined, and the non-negativity of the solution components is established. To carry out computational experiments with the model, an algorithm for numerically solving the used system of differential equations are developed based on the semi-implicit Euler scheme for the case of uniform distribution of durations of the complexes existence. The results of computational experiments aimed at approximation the numerical solution of the model to describing the kinetics of HIV-1 infection spread in its acute phase, including the eclipse phase, are presented. The variable used as the observable is the variable describing the number of viral particles per milliliter of blood on days 10–12 after the onset of acute infection. The dynamics of the observable variable is numerically studied depending on the variation of the model parameters reflecting the patterns of complex formation and the formation of cells producing viral particles. The possibility of attenuation of HIV-1 infection in the lymph node at certain values of some of the model parameters is shown.
-
Regarding the dynamics of cosymmetric predator – prey systems
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 799-813Views (last year): 12. Citations: 3 (RSCI).To study nonlinear effects of biological species interactions numerical-analytical approach is being developed. The approach is based on the cosymmetry theory accounting for the phenomenon of the emergence of a continuous family of solutions to differential equations where each solution can be obtained from the appropriate initial state. In problems of mathematical ecology the onset of cosymmetry is usually connected with a number of relationships between the parameters of the system. When the relationships collapse families vanish, we get a finite number of isolated solutions instead of a continuum of solutions and transient process can be long-term, dynamics taking place in a neighborhood of a family that has vanished due to cosymmetry collapse.
We consider a model for spatiotemporal competition of predators or prey with an account for directed migration, Holling type II functional response and nonlinear prey growth function permitting Alley effect. We found out the conditions on system parameters under which there is linear with respect to population densities cosymmetry. It is demonstated that cosymmetry exists for any resource function in case of heterogeneous habitat. Numerical experiment in MATLAB is applied to compute steady states and oscillatory regimes in case of spatial heterogeneity.
The dynamics of three population interactions (two predators and a prey, two prey and a predator) are considered. The onset of families of stationary distributions and limit cycle branching out of equlibria of a family that lose stability are investigated in case of homogeneous habitat. The study of the system for two prey and a predator gave a wonderful result of species coexistence. We have found out parameter regions where three families of stable solutions can be realized: coexistence of two prey in absence of a predator, stationary and oscillatory distributions of three coexisting species. Cosymmetry collapse is analyzed and long-term transient dynamics leading to solutions with the exclusion of one of prey or extinction of a predator is established in the numerical experiment.
-
Population waves and their bifurcations in a model “active predator – passive prey”
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 831-843Our purpose is to study the spatio-temporal population wave behavior observed in the predator-prey system. It is assumed that predators move both directionally and randomly, and prey spread only diffusely. The model does not take into account demographic processes in the predator population; it’s total number is constant and is a parameter. The variables of the model are the prey and predator densities and the predator speed, which are connected by a system of three reaction – diffusion – advection equations. The system is considered on an annular range, that is the periodic conditions are set at the boundaries of the interval. We have studied the bifurcations of wave modes arising in the system when two parameters are changed — the total number of predators and their taxis acceleration coefficient.
The main research method is a numerical analysis. The spatial approximation of the problem in partial derivatives is performed by the finite difference method. Integration of the obtained system of ordinary differential equations in time is carried out by the Runge –Kutta method. The construction of the Poincare map, calculation of Lyapunov exponents, and Fourier analysis are used for a qualitative analysis of dynamic regimes.
It is shown that, population waves can arise as a result of existence of directional movement of predators. The population dynamics in the system changes qualitatively as the total predator number increases. А stationary homogeneous regime is stable at low value of parameter, then it is replaced by self-oscillations in the form of traveling waves. The waveform becomes more complicated as the bifurcation parameter increases; its complexity occurs due to an increase in the number of temporal vibrational modes. A large taxis acceleration coefficient leads to the possibility of a transition from multi-frequency to chaotic and hyperchaotic population waves. A stationary regime without preys becomes stable with a large number of predators.
-
From homogeneous to inhomogeneous electronic analogue of DNA
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1397-1407In this work, the problem of constructing an electronic analogue of heterogeneous DNA is solved with the help of the methods of mathematical modeling. Electronic analogs of that type, along with other physical models of living systems, are widely used as a tool for studying the dynamic and functional properties of these systems. The solution to the problem is based on an algorithm previously developed for homogeneous (synthetic) DNA and modified in such a way that it can be used for the case of inhomogeneous (native) DNA. The algorithm includes the following steps: selection of a model that simulates the internal mobility of DNA; construction of a transformation that allows you to move from the DNA model to its electronic analogue; search for conditions that provide an analogy of DNA equations and electronic analogue equations; calculation of the parameters of the equivalent electrical circuit. To describe inhomogeneous DNA, the model was chosen that is a system of discrete nonlinear differential equations simulating the angular deviations of nitrogenous bases, and Hamiltonian corresponding to these equations. The values of the coefficients in the model equations are completely determined by the dynamic parameters of the DNA molecule, including the moments of inertia of nitrous bases, the rigidity of the sugar-phosphate chain, and the constants characterizing the interactions between complementary bases in pairs. The inhomogeneous Josephson line was used as a basis for constructing an electronic model, the equivalent circuit of which contains four types of cells: A-, T-, G-, and C-cells. Each cell, in turn, consists of three elements: capacitance, inductance, and Josephson junction. It is important that the A-, T-, G- and C-cells of the Josephson line are arranged in a specific order, which is similar to the order of the nitrogenous bases (A, T, G and C) in the DNA sequence. The transition from DNA to an electronic analog was carried out with the help of the A-transformation which made it possible to calculate the values of the capacitance, inductance, and Josephson junction in the A-cells. The parameter values for the T-, G-, and C-cells of the equivalent electrical circuit were obtained from the conditions imposed on the coefficients of the model equations and providing an analogy between DNA and the electronic model.
-
Investigation of the averaged model of coked catalyst oxidative regeneration
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 149-161The article is devoted to the construction and investigation of an averaged mathematical model of an aluminum-cobalt-molybdenum hydrocracking catalyst oxidative regeneration. The oxidative regeneration is an effective means of restoring the activity of the catalyst when its granules are coating with coke scurf.
The mathematical model of this process is a nonlinear system of ordinary differential equations, which includes kinetic equations for reagents’ concentrations and equations for changes in the temperature of the catalyst granule and the reaction mixture as a result of isothermal reactions and heat transfer between the gas and the catalyst layer. Due to the heterogeneity of the oxidative regeneration process, some of the equations differ from the standard kinetic ones and are based on empirical data. The article discusses the scheme of chemical interaction in the regeneration process, which the material balance equations are compiled on the basis of. It reflects the direct interaction of coke and oxygen, taking into account the degree of coverage of the coke granule with carbon-hydrogen and carbon-oxygen complexes, the release of carbon monoxide and carbon dioxide during combustion, as well as the release of oxygen and hydrogen inside the catalyst granule. The change of the radius and, consequently, the surface area of coke pellets is taken into account. The adequacy of the developed averaged model is confirmed by an analysis of the dynamics of the concentrations of substances and temperature.
The article presents a numerical experiment for a mathematical model of oxidative regeneration of an aluminum-cobalt-molybdenum hydrocracking catalyst. The experiment was carried out using the Kutta–Merson method. This method belongs to the methods of the Runge–Kutta family, but is designed to solve stiff systems of ordinary differential equations. The results of a computational experiment are visualized.
The paper presents the dynamics of the concentrations of substances involved in the oxidative regeneration process. A conclusion on the adequacy of the constructed mathematical model is drawn on the basis of the correspondence of the obtained results to physicochemical laws. The heating of the catalyst granule and the release of carbon monoxide with a change in the radius of the granule for various degrees of initial coking are analyzed. There are a description of the results.
In conclusion, the main results and examples of problems which can be solved using the developed mathematical model are noted.
-
On the permissible intensity of laser radiation in the optical system and on the technology for measuring the absorption coefficient of its power
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1025-1044Laser damage to transparent solids is a major limiting factor output power of laser systems. For laser rangefinders, the most likely destruction cause of elements of the optical system (lenses, mirrors) actually, as a rule, somewhat dusty, is not an optical breakdown as a result of avalanche, but such a thermal effect on the dust speck deposited on an element of the optical system (EOS), which leads to its ignition. It is the ignition of a speck of dust that initiates the process of EOS damage.
The corresponding model of this process leading to the ignition of a speck of dust takes into account the nonlinear Stefan –Boltzmann law of thermal radiation and the infinite thermal effect of periodic radiation on the EOS and the speck of dust. This model is described by a nonlinear system of differential equations for two functions: the EOS temperature and the dust particle temperature. It is proved that due to the accumulating effect of periodic thermal action, the process of reaching the dust speck ignition temperature occurs almost at any a priori possible changes in this process of the thermophysical parameters of the EOS and the dust speck, as well as the heat exchange coefficients between them and the surrounding air. Averaging these parameters over the variables related to both the volume and the surfaces of the dust speck and the EOS is correct under the natural constraints specified in the paper. The entire really significant spectrum of thermophysical parameters is covered thanks to the use of dimensionless units in the problem (including numerical results).
A thorough mathematical study of the corresponding nonlinear system of differential equations made it possible for the first time for the general case of thermophysical parameters and characteristics of the thermal effect of periodic laser radiation to find a formula for the value of the permissible radiation intensity that does not lead to the destruction of the EOS as a result of the ignition of a speck of dust deposited on the EOS. The theoretical value of the permissible intensity found in the general case in the special case of the data from the Grasse laser ranging station (south of France) almost matches that experimentally observed in the observatory.
In parallel with the solution of the main problem, we derive a formula for the power absorption coefficient of laser radiation by an EOS expressed in terms of four dimensionless parameters: the relative intensity of laser radiation, the relative illumination of the EOS, the relative heat transfer coefficient from the EOS to the surrounding air, and the relative steady-state temperature of the EOS.
-
Numerical-analytical modeling of gravitational lensing of the electromagnetic waves in random-inhomogeneous space plasma
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 433-443Instrument of numerical-analytical modeling of characteristics of propagation of electromagnetic waves in chaotic space plasma with taking into account effects of gravitation is developed for interpretation of data of measurements of astrophysical precision instruments of new education. The task of propagation of waves in curved (Riemann’s) space is solved in Euclid’s space by introducing of the effective index of refraction of vacuum. The gravitational potential can be calculated for various model of distribution of mass of astrophysical objects and at solution of Poisson’s equation. As a result the effective index of refraction of vacuum can be evaluated. Approximate model of the effective index of refraction is suggested with condition that various objects additively contribute in total gravitational field. Calculation of the characteristics of electromagnetic waves in the gravitational field of astrophysical objects is performed by the approximation of geometrical optics with condition that spatial scales of index of refraction a lot more wavelength. Light differential equations in Euler’s form are formed the basis of numerical-analytical instrument of modeling of trajectory characteristic of waves. Chaotic inhomogeneities of space plasma are introduced by model of spatial correlation function of index of refraction. Calculations of refraction scattering of waves are performed by the approximation of geometrical optics. Integral equations for statistic moments of lateral deviations of beams in picture plane of observer are obtained. Integrals for moments are reduced to system of ordinary differential equations the firsts order with using analytical transformations for cooperative numerical calculation of arrange and meansquare deviations of light. Results of numerical-analytical modeling of trajectory picture of propagation of electromagnetic waves in interstellar space with taking into account impact of gravitational fields of space objects and refractive scattering of waves on inhomogeneities of index of refraction of surrounding plasma are shown. Based on the results of modeling quantitative estimation of conditions of stochastic blurring of the effect of gravitational lensing of electromagnetic waves at various frequency ranges is performed. It’s shown that operating frequencies of meter range of wavelengths represent conditional low-frequency limit for observational of the effect of gravitational lensing in stochastic space plasma. The offered instrument of numerical-analytical modeling can be used for analyze of structure of electromagnetic radiation of quasar propagating through group of galactic.
-
Modeling the impact of epidemic spread and lockdown on economy
Computer Research and Modeling, 2025, v. 17, no. 2, pp. 339-363Epidemics severely destabilize economies by reducing productivity, weakening consumer spending, and overwhelming public infrastructure, often culminating in economic recessions. The COVID-19 pandemic underscored the critical role of nonpharmaceutical interventions, such as lockdowns, in containing infectious disease transmission. This study investigates how the progression of epidemics and the implementation of lockdown policies shape the economic well-being of populations. By integrating compartmental ordinary differential equation (ODE) models, the research analyzes the interplay between epidemic dynamics and economic outcomes, particularly focusing on how varying lockdown intensities influence both disease spread and population wealth. Findings reveal that epidemics inflict significant economic damage, but timely and stringent lockdowns can mitigate healthcare system overload by sharply reducing infection peaks and delaying the epidemic’s trajectory. However, carefully timed lockdown relaxation is equally vital to prevent resurgent outbreaks. The study identifies key epidemiological thresholds—such as transmission rates, recovery rates, and the basic reproduction number $(\mathfrak{R}0)$ — that determine the effectiveness of lockdowns. Analytically, it pinpoints the optimal proportion of isolated individuals required to minimize total infections in scenarios where permanent immunity is assumed. Economically, the analysis quantifies lockdown impacts by tracking population wealth, demonstrating that economic outcomes depend heavily on the fraction of isolated individuals who remain economically productive. Higher proportions of productive individuals during lockdowns correlate with better wealth retention, even under fixed epidemic conditions. These insights equip policymakers with actionable frameworks to design balanced lockdown strategies that curb disease spread while safeguarding economic stability during future health crises.
-
Modeling of calcium dynamics in soil organic layers
Computer Research and Modeling, 2010, v. 2, no. 1, pp. 103-110Views (last year): 1.Calcium is a major nutrient regulating metabolism in a plant. Deficiency of calcium results in a growth decline of plant tissues. Ca may be lost from forest soils due to acidic atmospheric deposition and tree harvesting. Plant-available calcium compounds are in the soil cation exchange complex and soil waters. Model of soil calcium dynamics linking it with the model of soil organic matter dynamics ROMUL in forest ecosystems is developed. ROMUL describes the mineralization and humification of the fraction of fresh litter which is further transformed into complex of partially humified substance (CHS) and then to stable humus (H) in dependence on temperature, soil moisture and chemical composition of the fraction (nitrogen, lignin and ash contents, pH). Rates of decomposition and humification being coefficients in the system of ordinary differential equations are evaluated using laboratory experiments and verified on a set of field experiments. Model of soil calcium dynamics describes calcium flows between pools of soil organic matter. Outputs are plant nutrition, leaching, synthesis of secondary minerals. The model describes transformation and mineralization of forest floor in detail. Experimental data for calibration model was used from spruсe forest of Bulgaria.
-
Numerical method for finding Nash and Shtakelberg equilibria in river water quality control models
Computer Research and Modeling, 2020, v. 12, no. 3, pp. 653-667In this paper we consider mathematical model to control water quality. We study a system with two-level hierarchy: one environmental organization (supervisor) at the top level and a few industrial enterprises (agents) at the lower level. The main goal of the supervisor is to keep water pollution level below certain value, while enterprises pollute water, as a side effect of the manufacturing process. Supervisor achieves its goal by charging a penalty for enterprises. On the other hand, enterprises choose how much to purify their wastewater to maximize their income.The fee increases the budget of the supervisor. Moreover, effulent fees are charged for the quantity and/or quality of the discharged pollution. Unfortunately, in practice, such charges are ineffective due to the insufficient tax size. The article solves the problem of determining the optimal size of the charge for pollution discharge, which allows maintaining the quality of river water in the rear range.
We describe system members goals with target functionals, and describe water pollution level and enterprises state as system of ordinary differential equations. We consider the problem from both supervisor and enterprises sides. From agents’ point a normal-form game arises, where we search for Nash equilibrium and for the supervisor, we search for Stackelberg equilibrium. We propose numerical algorithms for finding both Nash and Stackelberg equilibrium. When we construct Nash equilibrium, we solve optimal control problem using Pontryagin’s maximum principle. We construct Hamilton’s function and solve corresponding system of partial differential equations with shooting method and finite difference method. Numerical calculations show that the low penalty for enterprises results in increasing pollution level, when relatively high penalty can result in enterprises bankruptcy. This leads to the problem of choosing optimal penalty, which requires considering problem from the supervisor point. In that case we use the method of qualitatively representative scenarios for supervisor and Pontryagin’s maximum principle for agents to find optimal control for the system. At last, we compute system consistency ratio and test algorithms for different data. The results show that a hierarchical control is required to provide system stability.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




