Результаты поиска по 'vapor mass':
Найдено статей: 3
  1. Kudryashova O.B., Vorozhtsov A.B., Mikhailov Y.M.
    Study of the possibility of detecting traces of hazardous substances based on vapor detection
    Computer Research and Modeling, 2025, v. 17, no. 3, pp. 451-463

    The article investigates the possibility of detecting traces of hazardous substances (explosives and narcotics) based on the detection of their vapors in the air. The relevance of the study stems from the need to counter terrorist threats and drug trafficking, where identifying even trace amounts of substances is critical. The focus is on mathematical modeling of the evaporation of a thin substance layer from a surface, based on molecular kinetic theory. A universal model is proposed, accounting for the physicochemical properties of substances, ambient temperature, adhesion to the surface, and the initial mass of the layer. Using the Hertz – Knudsen – Langmuir and Clausius – Clapeyron equations, analytical expressions are derived for the complete evaporation time, maximum vapor mass, and process dynamics. A dimensionless parameter, $\gamma$, is identified, determining the limiting conditions for evaporation. It is shown that substance adhesion (coefficient $\alpha$) affects the evaporation rate but not the final vapor mass. Calculations were performed for six model substances (TNT, RDX, PETN, amphetamine, cocaine, heroin) with a wide range of properties. At room temperature and a surface concentration of 100 ng/cm2, most substances evaporate completely, except for RDX, which remains on the surface at 84%. Evaporation times range from fractions of a second (amphetamine) to several hours (heroin). For low-volatility substances, the maximum mass capable of evaporating under given conditions is determined. The novelty of the work lies in the development of a universal model applicable to a broad class of hazardous substances and in identifying key parameters governing the evaporation process. The results enable the estimation of detection limits for trace substances using vapor-based methods and can be applied in the design of security systems.

  2. Aksenov A.A., Zhluktov S.V., Kashirin V.S., Sazonova M.L., Cherny S.G., Drozdova E.A., Rode A.A.
    Numerical modeling of raw atomization and vaporization by flow of heat carrier gas in furnace technical carbon production into FlowVision
    Computer Research and Modeling, 2023, v. 15, no. 4, pp. 921-939

    Technical carbon (soot) is a product obtained by thermal decomposition (pyrolysis) of hydrocarbons (usually oil) in a stream of heat carrier gas. Technical carbon is widely used as a reinforcing component in the production of rubber and plastic masses. Tire production uses 70% of all carbon produced. In furnace carbon production, the liquid hydrocarbon feedstock is injected into the natural gas combustion product stream through nozzles. The raw material is atomized and vaporized with further pyrolysis. It is important for the raw material to be completely evaporated before the pyrolysis process starts, otherwise coke, that contaminates the product, will be produced. It is impossible to operate without mathematical modeling of the process itself in order to improve the carbon production technology, in particular, to provide the complete evaporation of the raw material prior to the pyrolysis process. Mathematical modelling is the most important way to obtain the most complete and detailed information about the peculiarities of reactor operation.

    A three-dimensional mathematical model and calculation method for raw material atomization and evaporation in the thermal gas flow are being developed in the FlowVision software package PC. Water is selected as a raw material to work out the modeling technique. The working substances in the reactor chamber are the combustion products of natural gas. The motion of raw material droplets and evaporation in the gas stream are modeled in the framework of the Eulerian approach of interaction between dispersed and continuous media. The simulation results of raw materials atomization and evaporation in a real reactor for technical carbon production are presented. Numerical method allows to determine an important atomization characteristic: average Sauter diameter. That parameter could be defined from distribution of droplets of raw material at each time of spray forming.

  3. Abshaev M.T., Abshaev A.M., Aksenov A.A., Fisher J.V., Schelyaev A.E.
    Simulation results of field experiments on the creation of updrafts for the development of artificial clouds and precipitation
    Computer Research and Modeling, 2023, v. 15, no. 4, pp. 941-956

    A promising method of increasing precipitation in arid climates is the method of creating a vertical high-temperature jet seeded by hygroscopic aerosol. Such an installation makes it possible to create artificial clouds with the possibility of precipitation formation in a cloudless atmosphere, unlike traditional methods of artificial precipitation enhancement, which provide for increasing the efficiency of precipitation formation only in natural clouds by seeding them with nuclei of crystallization and condensation. To increase the power of the jet, calcium chloride, carbamide, salt in the form of a coarse aerosol, as well as NaCl/TiO2 core/shell novel nanopowder, which is capable of condensing much more water vapor than the listed types of aerosols, are added. Dispersed inclusions in the jet are also centers of crystallization and condensation in the created cloud to increase the possibility of precipitation. To simulate convective flows in the atmosphere, a mathematical model of FlowVision large-scale atmospheric flows is used, the solution of the equations of motion, energy and mass transfer is carried out in relative variables. The statement of the problem is divided into two parts: the initial jet model and the FlowVision large-scale atmospheric model. The lower region, where the initial high-speed jet flows, is calculated using a compressible formulation with the solution of the energy equation with respect to the total enthalpy. This division of the problem into two separate subdomains is necessary in order to correctly carry out the numerical calculation of the initial turbulent jet at high velocity (M > 0.3). The main mathematical dependencies of the model are given. Numerical experiments were carried out using the presented model, experimental data from field tests of the installation for creating artificial clouds were taken for the initial data. A good agreement with the experiment is obtained: in 55% of the calculations carried out, the value of the vertical velocity at a height of 400 m (more than 2 m/s) and the height of the jet rise (more than 600 m) is within an deviation of 30% of the experimental characteristics, and in 30% of the calculations it is completely consistent with the experiment. The results of numerical simulation allow evaluating the possibility of using the high-speed jet method to stimulate artificial updrafts and to create precipitation. The calculations were carried out using FlowVision CFD software on SUSU Tornado supercomputer.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"