Результаты поиска по 'анализ данных':
Найдено статей: 273
  1. Мусаев А.А., Григорьев Д.А.
    Обзор современных технологий извлечения знаний из текстовых сообщений
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1291-1315

    Решение общей проблемы информационного взрыва связано с системами автоматической обработки цифровых данных, включая их распознавание, сортировку, содержательную обработку и представление в виде, приемлемом для восприятия человеком. Естественным решением является создание интеллектуальных систем извлечения знаний из неструктурированной информации. При этом явные успехи в области обработки структурированных данных контрастируют со скромными достижениями в области анализа неструктурированной информации, в частности в задачах обработки текстовых документов. В настоящее время данное направление находится в стадии интенсивных исследований и разработок. Данная работа представляет собой системный обзор международных и отечественных публикаций, посвященных ведущему тренду в области автоматической обработки потоков текстовой информации, а именно интеллектуальному анализу текстов или Text Mining (TM). Рассмотрены основные задачи и понятия TM, его место в области проблемы искусственного интеллекта, а также указаны сложности при обработке текстов на естественном языке (NLP), обусловленные слабой структурированностью и неоднозначностью лингвистической ин- формации. Описаны стадии предварительной обработки текстов, их очистка и селекция признаков, которые, наряду с результатами морфологического, синтаксического и семантического анализа, являются компонентами TM. Процесс интеллектуального анализа текстов представлен как отображение множества текстовых документов в «знания», т.е. в очищенную от избыточности и шума совокупность сведений, необходимых для решения конкретной прикладной задачи. На примере задачи трейдинга продемонстрирована формализация принятия торгового решения, основанная на совокупности аналитических рекомендаций. Типичными примерами TM являются задачи и технологии информационного поиска (IR), суммаризации текста, анализа тональности, классификации и кластеризации документов и т. п. Общим вопросом для всех методов TM является выбор типа словоформ и их производных, используемых для распознавания контента в последовательностях символов NL. На примере IR рассмотрены типовые алгоритмы поиска, основанные на простых словоформах, фразах, шаблонах и концептах, а также более сложные технологии, связанные с дополнением шаблонов синтаксической и семантической информацией. В общем виде дано описание механизмов NLP: морфологический, синтаксический, семантический и прагматический анализ. Приведен сравнительный анализ современных инструментов TM, позволяющий осуществить выбор платформы, исходя из особенности решаемой задачи и практических навыков пользователя.

    Musaev A.A., Grigoriev D.A.
    Extracting knowledge from text messages: overview and state-of-the-art
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1291-1315

    In general, solving the information explosion problem can be delegated to systems for automatic processing of digital data. These systems are intended for recognizing, sorting, meaningfully processing and presenting data in formats readable and interpretable by humans. The creation of intelligent knowledge extraction systems that handle unstructured data would be a natural solution in this area. At the same time, the evident progress in these tasks for structured data contrasts with the limited success of unstructured data processing, and, in particular, document processing. Currently, this research area is undergoing active development and investigation. The present paper is a systematic survey on both Russian and international publications that are dedicated to the leading trend in automatic text data processing: Text Mining (TM). We cover the main tasks and notions of TM, as well as its place in the current AI landscape. Furthermore, we analyze the complications that arise during the processing of texts written in natural language (NLP) which are weakly structured and often provide ambiguous linguistic information. We describe the stages of text data preparation, cleaning, and selecting features which, alongside the data obtained via morphological, syntactic, and semantic analysis, constitute the input for the TM process. This process can be represented as mapping a set of text documents to «knowledge». Using the case of stock trading, we demonstrate the formalization of the problem of making a trade decision based on a set of analytical recommendations. Examples of such mappings are methods of Information Retrieval (IR), text summarization, sentiment analysis, document classification and clustering, etc. The common point of all tasks and techniques of TM is the selection of word forms and their derivatives used to recognize content in NL symbol sequences. Considering IR as an example, we examine classic types of search, such as searching for word forms, phrases, patterns and concepts. Additionally, we consider the augmentation of patterns with syntactic and semantic information. Next, we provide a general description of all NLP instruments: morphological, syntactic, semantic and pragmatic analysis. Finally, we end the paper with a comparative analysis of modern TM tools which can be helpful for selecting a suitable TM platform based on the user’s needs and skills.

  2. Попов А.Б.
    Неэкстенсивная статистика Тсаллиса системы контрактоворганизаций оборонно-промышленного комплекса
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1163-1183

    В работе проведен анализ системы контрактов, заключаемых организациями оборонно-промышленного комплекса России в процессе выполнения государственного оборонного заказа. Сделан вывод, что для описания данной системы может быть использована методология статистической механики. По аналогии с подходом, применяемым при рассмотрении большого канонического ансамбля Гиббса, изучаемый ансамбль сформирован в виде набора мгновенных «картинок», образованных из действующих в каждый момент времени неразличимых контрактов со своими стоимостями. Показано, что ограничения, накладываемые государством на процесс ценообразования, являются причиной того, что совокупность контрактов может быть отнесена к категории так называемых сложных систем, для описания которых используется неэкстенсивная статистика Тсаллиса. Это приводит к тому, что стоимостные распределения контрактов должны соответствовать деформированному распределению Бозе–Эйнштейна, полученному с использованием энтропии Тсаллиса. Данный вывод справедлив как для всей совокупности контрактов, заключаемых участниками выполнения государственного оборонного заказа, так и контрактов, заключаемых отдельной организацией в качестве исполнителя.

    Для анализа степени соответствия эмпирических стоимостных распределений модифицированному распределению Бозе–Эйнштейна в настоящей работе использован метод сравнения соответствующих функций распределения вероятностей. В работе делается вывод о том, что для изучения стоимостных распределений контрактов отдельной организации в качестве анализируемых данных можно использовать сформировавшиеся за календарный год распределения выручки по отдельным заказам, соответствующим заключенным контрактам. Получены эмпирические функции распределения вероятностей ранжированных значений выручки от реализации по отдельным заказам АО «Концерн «ЦНИИ «Электроприбор», одной из ведущих приборостроительных организаций ОПК России, с 2007 по 2021 год. Наблюдается хорошее согласие между эмпирическими и теоретическими функциями распределений вероятностей, рассчитанными с использованием деформированных распределений Бозе–Эйнштейна в пределе «разряженного газа контрактов». Полученные на основе эмпирических данных значения параметров энтропийного индекса для каждого из изученных распределений выручки свидетельствуют о достаточно высокой степени неаддитивности, присущей изучаемой системе. Показано, что для оценки характеристических стоимостей распределений можно использовать величину среднего значения годовой выручки, рассчитанного с помощью нормированного эскортного распределения. Факт наилучшего согласия эмпирических и теоретических функций распределения вероятностей при нулевых значениях химического потенциала позволяет сделать предположение, что изучаемый «газ контрактов» можно сравнить с газом фотонов, в котором число частиц не является постоянным.

    Popov A.B.
    Nonextensive Tsallis statistics of contract system of prime contractors and subcontractors in defense industry
    Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1163-1183

    In this work, we analyze the system of contracts made by Russian defense enterprises in the process of state defense order execution. We conclude that methods of statistical mechanics can be applied to the description of the given system. Following the original grand-canonical ensemble approach, we can create the statistical ensemble under investigation as a set of instant snapshots of indistinguishable contracts having individual values. We show that due to government regulations of contract prices the contract system can be described in terms of nonextensive Tsallis statistics. We have found that probability distributions of contract prices correspond to deformed Bose – Einstein distributions obtained using nonextensive Tsallis entropy. This conclusion is true both in the case of the whole set of contracts and in the case of the contracts made by an individual defense company as a seller.

    In order to analyze how deformed Bose – Einstein distributions fit the empirical contract price distributions we compare the corresponding cumulative distribution functions. We conclude that annual distributions of individual sales which correspond to each company’s contract (order) can be used as relevant data for contract price distributions analysis. The empirical cumulative distribution functions for the individual sales ranking of Concern CSRI Elektropribor, one of the leading Russian defense companies, are analyzed for the period 2007–2021. The theoretical cumulative distribution functions, obtained using deformed Bose – Einstein distributions in the case of «rare contract gas» limit, fit well to the empirical cumulative distribution functions. The fitted values for the entropic index show that the degree of nonextensivity of the system under investigations is rather high. It is shown that the characteristic prices of distributions can be estimated by weighing the values of annual individual sales with the escort probabilities. Given that the fitted values of chemical potential are equal to zero, we suggest that «gas of contracts» can be compared to photon gas in which the number of particles is not conserved.

  3. Макаров И.С., Баганцова Е.Р., Яшин П.А., Ковалёва М.Д., Горбачёв Р.А.
    Разработка и исследование алгоритма выделения признаков в публикациях Twitter для задачи классификации с известной разметкой
    Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 171-183

    Посты социальных сетей играют важную роль в отражении ситуации на финансовом рынке, а их анализ является мощным инструментом ведения торговли. В статье описан результат исследования влияния деятельности социальных медиа на движение финансового рынка. Сначала отбирается топ инфлюенсеров, активность которых считается авторитетной в криптовалютном сообществе. Сообщения в Twitter используются в качестве данных. Подобные тексты обычно сильно зашумлены, так как включают сленг и сокращения, поэтому представлены методы подготовки первичных текстовых данных, включающих в себя обработку Stanza, регулярными выражениями. Рассмотрено два подхода представления момента времени в формате текстовых данных. Так исследуется влияние либо одного твита, либо целого пакета, состоящего из твитов, собранных за определенный период времени. Также рассмотрен статистический подход в виде частотного анализа, введены метрики, способные отразить значимость того или иного слова при выявлении зависимости между изменением цены и постами в Twitter. Частотный анализ подразумевает исследование распределений встречаемости различных слов и биграмм в тексте для положительного, отрицательного либо общего трендов. Для построения разметки изменения на рынке перерабатываются в бинарный вектор с помощью различных параметров, задавая таким образом задачу бинарной классификации. Параметры для свечей Binance подбираются для лучшего описания движения рынка криптовалюты, их вариативность также исследуется в данной статье. Оценка эмоционального окраса текстовых данных изучается с помощью Stanford Core NLP. Результат статистического анализа представляет непосредственно практический интерес, так как предполагает выбор признаков для дальнейшей бинарной или мультиклассовой задач классификации. Представленные методы анализа текста способствуют повышению точности моделей, решающих задачи обработки естественного языка, с помощью отбора слов, улучшения качества векторизации. Такие алгоритмы зачастую используются в автоматизированных торговых стратегиях для предсказания цены актива, тренда ее движения.

    Makarov I.S., Bagantsova E.R., Iashin P.A., Kovaleva M.D., Gorbachev R.A.
    Development of and research on an algorithm for distinguishing features in Twitter publications for a classification problem with known markup
    Computer Research and Modeling, 2023, v. 15, no. 1, pp. 171-183

    Social media posts play an important role in demonstration of financial market state, and their analysis is a powerful tool for trading. The article describes the result of a study of the impact of social media activities on the movement of the financial market. The top authoritative influencers are selected. Twitter posts are used as data. Such texts usually include slang and abbreviations, so methods for preparing primary text data, including Stanza, regular expressions are presented. Two approaches to the representation of a point in time in the format of text data are considered. The difference of the influence of a single tweet or a whole package consisting of tweets collected over a certain period of time is investigated. A statistical approach in the form of frequency analysis is also considered, metrics defined by the significance of a particular word when identifying the relationship between price changes and Twitter posts are introduced. Frequency analysis involves the study of the occurrence distributions of various words and bigrams in the text for positive, negative or general trends. To build the markup, changes in the market are processed into a binary vector using various parameters, thus setting the task of binary classification. The parameters for Binance candlesticks are sorted out for better description of the movement of the cryptocurrency market, their variability is also explored in this article. Sentiment is studied using Stanford Core NLP. The result of statistical analysis is relevant to feature selection for further binary or multiclass classification tasks. The presented methods of text analysis contribute to the increase of the accuracy of models designed to solve natural language processing problems by selecting words, improving the quality of vectorization. Such algorithms are often used in automated trading strategies to predict the price of an asset, the trend of its movement.

  4. Воронцова Д.В., Исаева М.В., Меньшиков И.А., Орлов К.Ю., Бернадотт А.К.
    Частотные, временные и пространственные изменения электроэнцефалограммы после COVID-19 при выполнении простого речевого задания
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 691-701

    Используя анализ данных и применение нейронных сетей в нашей работе, мы выявили закономерности электрической активности мозга, характеризующие COVID-19. Нас интересовали частотные, временные и пространственные паттерны электрической активности у людей, перенесших COVID-19. Мы обнаружили преобладание паттернов $\alpha$-ритма в левом полушарии у здоровых людей по сравнению с людьми, переболевшими COVID-19. Более того, мы наблюдаем значительное снижение вклада левого полушария в области речевого центра у людей, перенесших COVID-19, при выполнении речевых заданий. Наши результаты показывают, что сигнал у здоровых людей более пространственно локализован и синхронизирован между полушариями при выполнении задач по сравнению с людьми, перенесшими COVID-19. Мы также наблюдали снижение низких частот в обоих полушариях после COVID-19. Электроэнцефалографические (ЭЭГ) паттерны COVID-19 обнаруживаются в необычной частотной области. То, что обычно считается шумом в ЭЭГ-данных, несет в себе информацию, по которой можно определить, переболел ли человек COVID-19. Эти паттерны можно интерпретировать как признаки десинхронизации полушарий, преждевременного старения мозга и стресса при выполнении простых задач по сравнению с людьми без COVID-19 в анамнезе. В нашей работе мы показали применимость нейронных сетей для выявления долгосрочных последствий COVID-19 на данные ЭЭГ. Кроме того, наши данные подтвердили гипотезу о тяжести последствий COVID-19, обнаруженных по ЭЭГ-данным. Представленные результаты функциональной активности мозга позволяют использовать методы машинного обучения на простых неинвазивных интерфейсах «мозг–компьютер» для выявления пост-COVID-синдрома и прогресса в нейрореабилитации.

    Vorontsova D.V., Isaeva M.V., Menshikov I.A., Orlov K.Y., Bernadotte A.
    Frequency, time, and spatial electroencephalogram changes after COVID-19 during a simple speech task
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 691-701

    We found a predominance of α-rhythm patterns in the left hemisphere in healthy people compared to people with COVID-19 history. Moreover, we observe a significant decrease in the left hemisphere contribution to the speech center area in people who have undergone COVID-19 when performing speech tasks.

    Our findings show that the signal in healthy subjects is more spatially localized and synchronized between hemispheres when performing tasks compared to people who recovered from COVID-19. We also observed a decrease in low frequencies in both hemispheres after COVID-19.

    EEG-patterns of COVID-19 are detectable in an unusual frequency domain. What is usually considered noise in electroencephalographic (EEG) data carries information that can be used to determine whether or not a person has had COVID-19. These patterns can be interpreted as signs of hemispheric desynchronization, premature brain ageing, and more significant brain strain when performing simple tasks compared to people who did not have COVID-19.

    In our work, we have shown the applicability of neural networks in helping to detect the long-term effects of COVID-19 on EEG-data. Furthermore, our data following other studies supported the hypothesis of the severity of the long-term effects of COVID-19 detected on the EEG-data of EEG-based BCI. The presented findings of functional activity of the brain– computer interface make it possible to use machine learning methods on simple, non-invasive brain–computer interfaces to detect post-COVID syndrome and develop progress in neurorehabilitation.

  5. Рисник Д.В., Левич А.П., Булгаков Н.Г., Бикбулатов Э.С., Бикбулатова Е.М., Ершов Ю.В., Конюхов И.В., Корнева Л.Г., Лазарева В.И., Литвинов А.С., Максимов В.Н., Мамихин С.В., Осипов В.А., Отюкова Н.Г., Поддубный С.А., Пырина И.Л., Соколова Е.А., Степанова И.Э., Фурсова П.В., Цельмович О.Л.
    Поиск связей между биологическими и физико-химическими характеристиками экосистемы Рыбинского водохранилища. Часть 2. Детерминационный анализ
    Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 271-292

    На основании данных по содержанию пигментов фитопланктона, интенсивности флуоресценции проб и некоторым физико-химическим характеристикам вод Рыбинского водохранилища проведен поиск связи между биологическими и физико-химическими характеристиками. Исследованы методы описания связи между качественными классами характеристик, основанные на прогнозе качественных значений одной характеристики по качественным значениям другой. Найдены границы качественных классов исследуемых характеристик.

    Risnik D.V., Levich A.P., Bulgakov N.G., Bikbulatov E.S., Bikbulatova E.M., Ershov Y.V., Konuhov I.V., Korneva L.G., Lazareva V.I., Litvinov A.S., Maksimov V.N., Mamihin S.V., Osipov V.A., Otyukova N.G., Poddubnii S.A., Pirina I.L., Sokolova E.A., Stepanova I.E., Fursova P.V., Celmovich O.L.
    Searching for connections between biological and physico-chemical characteristics of Rybinsk reservoir ecosystem. Part 2. Determination analysis
    Computer Research and Modeling, 2013, v. 5, no. 2, pp. 271-292

    Based on contents of phytoplankton pigments, fluorescence samples and some physico-chemical characteristics of the Rybinsk reservoir waters, searching for connections between biological and physicalchemical characteristics is working out. The methods of describing of connections between qualitative classes of characteristics, based on forecast of quality values of one characteristics by quality values of another one, are studied. The borders of quality classes of studied characteristics are found.

    Views (last year): 2. Citations: 3 (RSCI).
  6. Молчанов А.Г., Ольчев А.В.
    Модель газообмена СО2 сфагнового верхового болота
    Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 369-377

    На основе анализа данных измерений потоков СО2 на двух примыкающих участках неосушенного сфагнового верхового болота (сосняке кустарничково-сфагновом и кустарничково-сфагновом болоте с редкой сосной) в Московской области построена модель, описывающая зависимость газообмена СО2 верхового болота от приходящей суммарной солнечной радиации, влажности почвы и температуры воздуха. Исследования проводились во второй половине вегетационного периода при уровне болотных вод ниже 30 см. На основе данных измерений выявлена ведущая роль влажности почвы как фактора, определяющего интенсивность фотосинтеза и дыхания сфагнума и почвы. Построенная модель позволяет объяснить от 71 % до 74 % изменчивости газообмена СО2 исследуемого болота.

     

    Molchanov A.G., Olchev A.V.
    Model of CO2 exchange in a sphagnum peat bog
    Computer Research and Modeling, 2016, v. 8, no. 2, pp. 369-377

    A simple model was developed to describe the dependence of net CO2 exchange in a sphagnum peat bog as a function of incoming solar radiation, air temperature, and soil moisture. It was parameterized using the field measurement data from two neighboring sites in an undisturbed peat bog (the pine mire with shrub and sphagnum and the shrub-sphagnum mire with rare pine) in Moscow Region. Measurements were conducted during the second part of the growing season, when the groundwater level was below 30 cm. It was shown that is a key parameter influencing the photosynthesis and respiration rates of a sphagnum moss and peat soil. The developed model allows to explain from 71 % to 74 % of the variation of CO2 exchange in the peat bog.

    Views (last year): 1. Citations: 3 (RSCI).
  7. Цибулин В.Г., Хосаева З.Х.
    Математическая модель дифференциации общества с социальной напряженностью
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 999-1012

    В статье моделируется развитие во времени многопартийной политической системы с учетом социальной напряженности. Предлагается система нелинейных дифференциальных уравнений относительно долей приверженцев партий и дополнительной скалярной переменной, характеризующей величину напряженности в обществе. Изменение доли каждой партии пропорционально текущему значению, умноженному на коэффициент, который состоит из притока беспартийных, перетоков членов из конкурирующих партий и убыли вследствие роста социальной напряженности. Напряженность прирастает пропорционально долям партий и снижается при их отсутствии. Число партий фиксировано, в модели отсутствуют механизмы объединения существующих или рождения новых партий.

    Для исследования модели использован подход, основанный на выделении условий, при которых данная задача относится к классу косимметричных систем. Это позволяет проанализировать мультистабильность возможных динамических процессов и их разрушение при нарушении косимметрии. Существование косимметрии для системы дифференциальных уравнений обеспечивается наличием дополнительных связей на параметры, и при этом возможно возникновение непрерывных семейств стационарных и нестационарных решений. Для анализа сценариев нарушения косимметрии применяется подход на основе селективной функции. В случае с одной политической партией мультистабильности нет, каждому набору параметров соответствует только одно устойчивое решение. Для системы из двух партий показано, что возможны два семейства равновесий, а также семейство предельных циклов. Представлены результаты численных экспериментов, демонстрирующие разрушение семейств и реализацию различных сценариев, приводящих к стабилизации политической системы с сосуществованием обеих партий или к исчезновению одной из партий, когда часть населения перестает поддерживать одну из партий и становится безразличной.

    Рассматриваемая модель может быть использована для прогнозирования межпартийной борьбы во время предвыборной кампании. В этом случае необходимо учитывать зависимость коэффициентов системы от времени.

    Tsybulin V.G., Khosaeva Z.K.
    Mathematical model of political differentiation under social tension
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 999-1012

    We comsider a model of the dynamics a political system of several parties, accompanied and controlled by the growth of social tension. A system of nonlinear ordinary differential equations is proposed with respect to fractions and an additional scalar variable characterizing the magnitude of tension in society the change of each party is proportional to the current value multiplied by a coefficient that consists of an influx of novice, a flow from competing parties, and a loss due to the growth of social tension. The change in tension is made up of party contributions and own relaxation. The number of parties is fixed, there are no mechanisms in the model for combining existing or the birth of new parties.

    To study of possible scenarios of the dynamic processes of the model we derive an approach based on the selection of conditions under which this problem belongs to the class of cosymmetric systems. For the case of two parties, it is shown that in the system under consideration may have two families of equilibria, as well as a family of limit cycles. The existence of cosymmetry for a system of differential equations is ensured by the presence of additional constraints on the parameters, and in this case, the emergence of continuous families of stationary and nonstationary solutions is possible. To analyze the scenarios of cosymmetry breaking, an approach based on the selective function is applied. In the case of one political party, there is no multistability, one stable solution corresponds to each set of parameters. For the case of two parties, it is shown that in the system under consideration may have two families of equilibria, as well as a family of limit cycles. The results of numerical experiments demonstrating the destruction of the families and the implementation of various scenarios leading to the stabilization of the political system with the coexistence of both parties or to the disappearance of one of the parties, when part of the population ceases to support one of the parties and becomes indifferent are presented.

    This model can be used to predict the inter-party struggle during the election campaign. In this case necessary to take into account the dependence of the coefficients of the system on time.

  8. Русяк И.Г., Тененев В.А.
    Моделирование баллистики артиллерийского выстрела с учетом пространственного распределения параметров и противодавления
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1123-1147

    В работе приводится сравнительный анализ результатов, полученных при различных подходах к моделированию процесса артиллерийского выстрела. В этой связи дана постановка основной задачи внутренней баллистики и ее частного случая задачи Лагранжа в осредненных параметрах, где в рамках допущений термодинамического подхода впервые учтены распределения давления и скорости газа по заснарядному пространству для канала переменного сечения. Представлена также постановка задачи Лагранжа в рамках газодинамического подхода, учитывающего пространственное (одномерное и двумерное осесимметричное) изменение характеристик внутрибаллистического процесса. Для численного решения системы газодинамических уравнений Эйлера применяется метод контрольного объема. Параметры газа на границах контрольных объемов опреде- ляются с использованием автомодельного решения задачи о распаде произвольного разрыва. На базе метода Годунова предложена модификация схемы Ошера, позволяющая реализовать алгоритм численного расчета со вторым порядком точности по координате и времени. Проведено сравнение решений, полученных в рамках термодинамического и газодинамического подходов, при различных параметрах заряжания. Изучено влияние массы снаряда и уширения камеры на распределение внутрибаллистических параметров выстрела и динамику движения снаряда. Показано, что термодинамический подход, по сравнению с газодинамическим подходом, приводит к систематическому завышению расчетной дульной скорости снаряда во всем исследованном диапазоне изменения параметров, при этом различие по дульной скорости может достигать 35 %. В то же время расхождение результатов, полученных в рамках одномерной и двумерной газодинамических моделей выстрела в этом же диапазоне изменения параметров, составляет не более 1.3 %.

    Дана пространственная газодинамическая постановка задачи о противодавлении, описывающая изменение давления перед ускоряющимся снарядом при его движении по каналу ствола. Показано, что учет формы передней части снаряда в рамках двумерной осесимметричной постановки задачи приводит к существенному различию полей давления за фронтом ударной волны по сравнению с решением в рамках одномерной постановки задачи, где форму передней части снаряда учесть невозможно. Сделан вывод, что это может существенно повлиять на результаты моделирования баллистики выстрела при высоких скоростях метания.

    Rusyak I.G., Tenenev V.A.
    Modeling of ballistics of an artillery shot taking into account the spatial distribution of parameters and backpressure
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1123-1147

    The paper provides a comparative analysis of the results obtained by various approaches to modeling the process of artillery shot. In this connection, the main problem of internal ballistics and its particular case of the Lagrange problem are formulated in averaged parameters, where, within the framework of the assumptions of the thermodynamic approach, the distribution of pressure and gas velocity over the projectile space for a channel of variable cross section is taken into account for the first time. The statement of the Lagrange problem is also presented in the framework of the gas-dynamic approach, taking into account the spatial (one-dimensional and two-dimensional axisymmetric) changes in the characteristics of the ballistic process. The control volume method is used to numerically solve the system of Euler gas-dynamic equations. Gas parameters at the boundaries of control volumes are determined using a selfsimilar solution to the Riemann problem. Based on the Godunov method, a modification of the Osher scheme is proposed, which allows to implement a numerical calculation algorithm with a second order of accuracy in coordinate and time. The solutions obtained in the framework of the thermodynamic and gas-dynamic approaches are compared for various loading parameters. The effect of projectile mass and chamber broadening on the distribution of the ballistic parameters of the shot and the dynamics of the projectile motion was studied. It is shown that the thermodynamic approach, in comparison with the gas-dynamic approach, leads to a systematic overestimation of the estimated muzzle velocity of the projectile in the entire range of parameters studied, while the difference in muzzle velocity can reach 35%. At the same time, the discrepancy between the results obtained in the framework of one-dimensional and two-dimensional gas-dynamic models of the shot in the same range of change in parameters is not more than 1.3%.

    A spatial gas-dynamic formulation of the backpressure problem is given, which describes the change in pressure in front of an accelerating projectile as it moves along the barrel channel. It is shown that accounting the projectile’s front, considered in the two-dimensional axisymmetric formulation of the problem, leads to a significant difference in the pressure fields behind the front of the shock wave, compared with the solution in the framework of the onedimensional formulation of the problem, where the projectile’s front is not possible to account. It is concluded that this can significantly affect the results of modeling ballistics of a shot at high shooting velocities.

  9. Шмидт Ю.Д., Ивашина Н.В., Озерова Г.П.
    Моделирование межрегиональных миграционных потоков клеточными автоматами
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1467-1483

    В статье исследуется проблема разработки и обоснования наиболее адекватного инструментария для прогнозирования величины и структуры межрегиональных миграционных потоков. Миграционные процессы оказывают значительное влияние на численность и демографическую структуру населения территорий, состояние и сбалансированность региональных и локальных рынков труда. Для анализа миграционных процессов и оценки их последствий необходим экономикоатематический инструментарий, позволяющий с необходимой точностью моделировать миграционные процессы и потоки для различных территорий. Рассмотрены существующие подходы и методы моделирования миграционных процессов с анализом их преимуществ и недостатков. Отмечается, что для реализации многих из этих методов необходим большой массив агрегированных статистических данных, который не всегда имеется в наличии и не характеризует поведение мигрантов на локальном уровне, на котором принимается решение о переезде на новое место жительства. Это существенно влияет на возможность применения соответствующих методов моделирования миграционных процессов и точность прогнозов величины и структуры миграционных потоков.

    В работе разработана и апробирована на данных Приморского края модель клеточного автомата для моделирования межрегиональных миграционных потоков, реализующая интеграцию модели миграционного поведения домашних хозяйств в условиях ограниченной рациональности в общую модель миграционного потока территории. Для реализации модели миграционного поведения домашних хозяйств в условиях ограниченной рациональности предложен интегральный индекс привлекательности регионов с экономической, социальной и экологической составляющими. Для оценки прогностической способности разработанной модели проведено ее сравнение с существующими моделями клеточных автоматов, используемыми для прогнозирования межрегиональных миграционных потоков. Для этих целей был использован метод вневыборочного прогнозирования, который показал статистически значимое превосходство предложенной модели, которая позволяет получать прогнозы и количественные характеристики миграционных потоков территорий на основе реального миграционного поведения домашних хозяйств на локальном уровне с учетом условий их проживания и поведенческих мотивов.

    Shmidt Y.D., Ivashina N.V., Ozerova G.P.
    Modelling interregional migration flows by the cellular automata
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1467-1483

    The article dwells upon investigating the issue of the most adequate tools developing and justifying to forecast the interregional migration flows value and structure. Migration processes have a significant impact on the size and demographic structure of the population of territories, the state and balance of regional and local labor markets.

    To analyze the migration processes and to assess their impact an economic-mathematical tool is required which would be instrumental in modelling the migration processes and flows for different areas with the desired precision. The current methods and approaches to the migration processes modelling, including the analysis of their advantages and disadvantages, were considered. It is noted that to implement many of these methods mass aggregated statistical data is required which is not always available and doesn’t characterize the migrants behavior at the local level where the decision to move to a new dwelling place is made. This has a significant impact on the ability to apply appropriate migration processes modelling techniques and on the projection accuracy of the migration flows magnitude and structure.

    The cellular automata model for interregional migration flows modelling, implementing the integration of the households migration behavior model under the conditions of the Bounded Rationality into the general model of the area migration flow was developed and tested based on the Primorye Territory data. To implement the households migration behavior model under the conditions of the Bounded Rationality the integral attractiveness index of the regions with economic, social and ecological components was proposed in the work.

    To evaluate the prognostic capacity of the developed model, it was compared with the available cellular automata models used to predict interregional migration flows. The out of sample prediction method which showed statistically significant superiority of the proposed model was applied for this purpose. The model allows obtaining the forecasts and quantitative characteristics of the areas migration flows based on the households real migration behaviour at the local level taking into consideration their living conditions and behavioural motives.

  10. Краснов Ф.В., Смазневич И.С., Баскакова Е.Н.
    Метод контрастного семплирования для предсказания библиографических ссылок
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1317-1336

    В работе рассматривается задача поиска в научной статье фрагментов с недостающими библиографическими ссылками с помощью автоматической бинарной классификации. Для обучения модели предложен метод контрастного семплирования, новшеством которого является рассмотрение контекста ссылки с учетом границ фрагмента, максимально влияющего на вероятность нахождения в нем библиографической ссылки. Обучающая выборка формировалась из автоматически размеченных семплов — фрагментов из трех предложений с метками классов «без ссылки» и «со ссылкой», удовлетворяющих требованию контрастности: семплы разных классов дистанцируются в исходном тексте. Пространство признаков строилось автоматически по статистике встречаемости термов и расширялось за счет конструирования дополнительных признаков — выделенных в тексте сущностей ФИО, чисел, цитат и аббревиатур.

    Проведена серия экспериментов на архивах научных журналов «Правоприменение» (273 статьи) и «Журнал инфектологии» (684 статьи). Классификация осуществлялась моделями Nearest Neighbours, RBF SVM, Random Forest, Multilayer Perceptron, с подбором оптимальных гиперпараметров для каждого классификатора.

    Эксперименты подтвердили выдвинутую гипотезу. Наиболее высокую точность показал нейросетевой классификатор (95%), уступающий по скорости линейному, точность которого при контрастном семплировании также оказалась высока (91–94 %). Полученные значения превосходят результаты, опубликованные для задач NER и анализа тональности на данных со сравнимыми характеристиками. Высокая вычислительная эффективность предложенного метода позволяет встраивать его в прикладные системы и обрабатывать документы в онлайн-режиме.

    Krasnov F.V., Smaznevich I.S., Baskakova E.N.
    Bibliographic link prediction using contrast resampling technique
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1317-1336

    The paper studies the problem of searching for fragments with missing bibliographic links in a scientific article using automatic binary classification. To train the model, we propose a new contrast resampling technique, the innovation of which is the consideration of the context of the link, taking into account the boundaries of the fragment, which mostly affects the probability of presence of a bibliographic links in it. The training set was formed of automatically labeled samples that are fragments of three sentences with class labels «without link» and «with link» that satisfy the requirement of contrast: samples of different classes are distanced in the source text. The feature space was built automatically based on the term occurrence statistics and was expanded by constructing additional features — entities (names, numbers, quotes and abbreviations) recognized in the text.

    A series of experiments was carried out on the archives of the scientific journals «Law enforcement review» (273 articles) and «Journal Infectology» (684 articles). The classification was carried out by the models Nearest Neighbors, RBF SVM, Random Forest, Multilayer Perceptron, with the selection of optimal hyperparameters for each classifier.

    Experiments have confirmed the hypothesis put forward. The highest accuracy was reached by the neural network classifier (95%), which is however not as fast as the linear one that showed also high accuracy with contrast resampling (91–94%). These values are superior to those reported for NER and Sentiment Analysis on comparable data. The high computational efficiency of the proposed method makes it possible to integrate it into applied systems and to process documents online.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"