Результаты поиска по 'динамические уравнения':
Найдено статей: 109
  1. Неверова Г.П., Жданова О.Л., Колбина Е.А., Абакумов А.И.
    Планктонное сообщество: влияние зоопланктона на динамику фитопланктона
    Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 751-768

    Методами математического моделирования оценивается спектр влияния зоопланктона на динамику обилия фитопланктона. Предложена трехкомпонентная модель сообщества «фитопланктон–зоопланктон» с дискретным временем, рассматривающая неоднородность зоопланктона по стадии развития и типу питания, учтено наличие каннибализма в сообществе зоопланктона, в процессе которого зрелые особи некоторых его видов поедают ювенильных. Процессы взаимодействия зоо- и фитопланктона в явном виде учтены в выживаемостях на ранних стадиях жизненного цикла зоопланктона; а также явно рассматривается убыль фитопланктона в результате выедания его биомассы зоопланктоном; используется трофическая функция Холлинга II типа для описания насыщения при потреблении биомассы. Динамика фитопланктонного сообщества представлена уравнением Рикера, что позволяет неявно учитывать ограничение роста биомассы фитопланктона доступностью внешних ресурсов (минерального питания, кислорода, освещенности и т. п.).

    Проанализированы сценарии перехода от стационарной динамики к колебаниям численности фито- и зоопланктона при различных значениях внутрипопуляционных параметров, определяющих характер динамики каждого из составляющих сообщество видов, и параметров их взаимодействия. Основное внимание уделено изучению огромного разнообразия сложной динамики сообщества. В рамках используемой в работе модели, описывающей динамику фитопланктона в отсутствие межвидового взаимодействия, происходит усложнение его динамики через серию бифуркаций удвоения периода. При этом с появлением зоопланктона каскад бифуркаций удвоения периода у фитопланктона и сообщества в целом реализуется раньше (при более низких скоростях воспроизводства клеток фитопланктона), чем в случае, когда фитопланктон развивается изолированно. При этом вариация уровня каннибализма зоопланктона способна значительно изменить как существующий в сообществе режим динамики, так и его бифуркацию; при определенной структуре пищевых отношений зоопланктона возможна реализация сценария Неймарка–Сакера в сообществе. Учитывая, что уровень каннибализма зоопланктона может меняться из-за естественных процессов созревания особей отдельных видов и достижения ими плотоядной стадии, можно ожидать выраженные изменения динамического режима в сообществе: резкие переходы от регулярной к квазипериодической динамике (по сценарию Неймарка–Сакера) и далее к точным циклам с небольшим периодом (обратная реализация каскада удвоения периода).

    Neverova G.P., Zhdanova O.L., Kolbina E.A., Abakumov A.I.
    A plankton community: a zooplankton effect in phytoplankton dynamics
    Computer Research and Modeling, 2019, v. 11, no. 4, pp. 751-768

    The paper uses methods of mathematical modeling to estimate a zooplankton influence on the dynamics of phytoplankton abundance. We propose a three-component model of the “phytoplankton–zooplankton” community with discrete time, considering a heterogeneity of zooplankton according to the developmental stage and type of feeding; the model takes into account cannibalism in zooplankton community, during which mature individuals of some of its species consume juvenile ones. Survival rates at the early stages of zooplankton life cycle depend explicitly on the interaction between zooplankton and phytoplankton. Loss of phytoplankton biomass because of zooplankton consumption is explicitly considered. We use the Holling functional response of type II to describe saturation during biomass consumption. The dynamics of the phytoplankton community is represented by the Ricker model, which allows to take into account the restriction of phytoplankton biomass growth by the availability of external resources (mineral nutrition, oxygen, light, etc.) implicitly.

    The study analyzed scenarios of the transition from stationary dynamics to fluctuations in the size of phytoand zooplankton for various values of intrapopulation parameters determining the nature of the dynamics of the species constituting the community, and the parameters of their interaction. The focus is on exploring the complex modes of community dynamics. In the framework of the model used for describing dynamics of phytoplankton in the absence of interspecific interaction, phytoplankton dynamics undergoes a series of perioddoubling bifurcations. At the same time, with zooplankton appearance, the cascade of period-doubling bifurcations in phytoplankton and the community as a whole is realized earlier (at lower reproduction rates of phytoplankton cells) than in the case when phytoplankton develops in isolation. Furthermore, the variation in the cannibalism level in zooplankton can significantly change both the existing dynamics in the community and its bifurcation; e.g., with a certain structure of zooplankton food relationships the realization of Neimark–Sacker bifurcation scenario in the community is possible. Considering the cannibalism level in zooplankton can change due to the natural maturation processes and achievement of the carnivorous stage by some individuals, one can expect pronounced changes in the dynamic mode of the community, i.e. abrupt transitions from regular to quasiperiodic dynamics (according to Neimark–Sacker scenario) and further cycles with a short period (the implementation of period halving bifurcation).

    Views (last year): 3.
  2. Решитько М.А., Угольницкий Г.А., Усов А.Б.
    Численный метод нахождения равновесий Нэша и Штакельберга в моделях контроля качества речных вод
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 653-667

    В статье рассмотрена задача построения равновесий Нэша и Штакельберга при исследовании динамической системы контроля качества речных вод. Учитывается влияние субъектов управления двух уровней: одного ведущего и нескольких ведомых. В качестве ведущего (супервайзера) выступает природоохранный орган, а в роли ведомых (агентов) — промышленные предприятия. Основной целью супервайзера является поддержание допустимой концентрации загрязняющих веществ в речной воде. Добиться этого он может не единственным образом, поэтому, кроме того, супервайзер стремится к оптимизации своего целевого функционала. Супервайзер воздействует на агентов, назначая величину платы за сброс загрязнений в водоток. Плата за загрязнение от агента поступает в федеральный и местные бюджеты, затем распределяется на общих основаниях. Таким образом, плата увеличивает бюджет супервайзера, что и отражено в его целевом функционале. Причем плата за сброс загрязнений начисляется за количество и/или качество сброшенных загрязнений. К сожалению, для большинства систем контроля качества речных вод такая практика неэффективна из-за малого размера платы за сброс загрязнений. В статье и решается задача определения оптимального размера платы за сброс загрязнений, который позволяет поддерживать качество речной воды в заданном диапазоне.

    Агенты преследуют только свои эгоистические цели, выражаемые их целевыми функционалами, и не обращают внимания на состояние речной системы. Управление агента можно рассматривать как часть стока, которую агент очищает, а управление супервайзера — как назначаемый размер платы за сброс оставшихся загрязнений в водоток.

    Для описания изменения концентраций загрязняющих веществ в речной системе используется обыкновенное дифференциальное уравнение. Проблема поддержания заданного качества речной воды в рамках предложенной модели исследуется как с точки зрения агентов, так и с точки зрения супервайзера. В первом случае возникает дифференциальная игра в нормальной форме, в которой строится равновесие Нэша, во втором — иерархическая дифференциальная игра, разыгрываемая в соответствии с информационным регламентом игры Штакельберга. Указаны алгоритмы численного построения равновесий Нэша и Штакельберга для широкого класса входных функций. При построении равновесия Нэша возникает необходимость решения задач оптимального управления. Решение этих задач проводится в соответствии с принципом максимума Понтрягина. Строится функция Гамильтона, полученная система дифференциальных уравнений решается численно методом стрельбы и методом конечных разностей. Проведенные численные расчеты показывают, что низкий размер платы за единицу сброшенных в водоток загрязнений приводит к росту концентрации загрязняющих веществ в водотоке, а высокий — к банкротству предприятий. Это приводит к задаче нахождения оптимальной величины платы за сброс загрязнений, то есть к рассмотрению проблемы с точки зрения супервайзера. В этом случае возникает иерархическая дифференциальная игра супервайзера и агентов, в которой ищется равновесие Штакельберга. Возникает задача максимизации целевого функционала супервайзера с учетом управлений агентов, образующих равновесие Нэша. При нахождении оптимальных управлений супервайзера используется метод качественно репрезентативных сценариев, а для агентов — принцип максимума Понтрягина. Проведены численные эксперименты, найден коэффициент системной согласованности. Полученные численные результаты позволяют сделать вывод, что система контроля качества речных вод плохо системно согласована и для достижения стабильного развития системы необходимо иерархическое управление.

    Reshitko M.A., Ougolnitsky G.A., Usov A.B.
    Numerical method for finding Nash and Shtakelberg equilibria in river water quality control models
    Computer Research and Modeling, 2020, v. 12, no. 3, pp. 653-667

    In this paper we consider mathematical model to control water quality. We study a system with two-level hierarchy: one environmental organization (supervisor) at the top level and a few industrial enterprises (agents) at the lower level. The main goal of the supervisor is to keep water pollution level below certain value, while enterprises pollute water, as a side effect of the manufacturing process. Supervisor achieves its goal by charging a penalty for enterprises. On the other hand, enterprises choose how much to purify their wastewater to maximize their income.The fee increases the budget of the supervisor. Moreover, effulent fees are charged for the quantity and/or quality of the discharged pollution. Unfortunately, in practice, such charges are ineffective due to the insufficient tax size. The article solves the problem of determining the optimal size of the charge for pollution discharge, which allows maintaining the quality of river water in the rear range.

    We describe system members goals with target functionals, and describe water pollution level and enterprises state as system of ordinary differential equations. We consider the problem from both supervisor and enterprises sides. From agents’ point a normal-form game arises, where we search for Nash equilibrium and for the supervisor, we search for Stackelberg equilibrium. We propose numerical algorithms for finding both Nash and Stackelberg equilibrium. When we construct Nash equilibrium, we solve optimal control problem using Pontryagin’s maximum principle. We construct Hamilton’s function and solve corresponding system of partial differential equations with shooting method and finite difference method. Numerical calculations show that the low penalty for enterprises results in increasing pollution level, when relatively high penalty can result in enterprises bankruptcy. This leads to the problem of choosing optimal penalty, which requires considering problem from the supervisor point. In that case we use the method of qualitatively representative scenarios for supervisor and Pontryagin’s maximum principle for agents to find optimal control for the system. At last, we compute system consistency ratio and test algorithms for different data. The results show that a hierarchical control is required to provide system stability.

  3. Аксёнов А.А., Каширин В.С., Тимушев С.Ф., Шапоренко Е.В.
    Развитие метода акустико-вихревой декомпозиции для моделирования шума автомобильных шин
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 979-993

    Дорожный шум является одной из ключевых проблем в обеспечении поддержания высоких стандартов охраны окружающей среды. В диапазоне скоростей от 50 до 120 км/ч шины являются основным источником шума, создаваемого движущимся автомобилем. Хорошо известно, что шум и вибрация шин генерируются либо взаимодействием протектора шины и дорожного покрытия, либо некоторыми внутренними динамическими эффектами. В данной статье рассматривается применение нового метода моделирования генерации и распространения звука при движении автомобильной шины, основанного на применении так называемой акустико-вихревой декомпозиции. Используемые в настоящее время подходы к моделированию шума автомобильных шин основаны главным образом на применении уравнения Лайтхила и аэроакустической аналогии. Аэроакустическая аналогия не является математически строгой формулировкой для вывода источника (правой части) акустического волнового уравнения при решении задачи — разделения акустической и вихревой (псевдозвуковой) мод колебаний. При разработке метода акустико-вихревой декомпозиции проводится математически строгое преобразование уравнений движения сжимаемой среды для получения неоднородного волнового уравнения относительно пульсаций статической энтальпии с источниковым членом, который зависит от поля скоростей вихревой моды. При этом колебания давления в ближнем поле представляют собой сумму акустических колебаний и псевдозвука. Таким образом, метод акустико-вихревой декомпозиции позволяет адекватно моделировать и акустическое поле, и динамические нагрузки, генерирующие вибрацию шины, обеспечивая полное решение проблемы моделирования шума шин, который является результатом ее турбулентного обтекания с генерацией вихревого звука, а также динамического нагружения и излучения шума вследствие вибрации шины. Метод впервые реализован и тестируется в программном пакете FlowVision. Приводится сравнение результатов FlowVision с расчетами, полученными с помощью пакета LMS Virtual.Lab Acoustics, и объясняется некоторое различие в спектрах акустического поля.

    Aksenov A.A., Kashirin V.S., Timushev S.F., Shaporenko E.V.
    Development of acoustic-vortex decomposition method for car tyre noise modelling
    Computer Research and Modeling, 2023, v. 15, no. 4, pp. 979-993

    Road noise is one of the key issues in maintaining high environmental standards. At speeds between 50 and 120 km/h, tires are the main source of noise generated by a moving vehicle. It is well known that either the interaction between the tire tread and the road surface or some internal dynamic effects are responsible for tire noise and vibration. This paper discusses the application of a new method for modelling the generation and propagation of sound during tire motion, based on the application of the so-called acoustic-vortex decomposition. Currently, the application of the Lighthill equation and the aeroacoustics analogy are the main approaches used to model tire noise. The aeroacoustics analogy, in solving the problem of separating acoustic and vortex (pseudo-sound) modes of vibration, is not a mathematically rigorous formulation for deriving the source (righthand side) of the acoustic wave equation. In the development of the acoustic-vortex decomposition method, a mathematically rigorous transformation of the equations of motion of a compressible medium is performed to obtain an inhomogeneous wave equation with respect to static enthalpy pulsations with a source term that de-pends on the velocity field of the vortex mode. In this case, the near-field pressure fluctuations are the sum of acoustic fluctuations and pseudo-sound. Thus, the acoustic-vortex decomposition method allows to adequately modeling the acoustic field and the dynamic loads that generate tire vibration, providing a complete solution to the problem of modelling tire noise, which is the result of its turbulent flow with the generation of vortex sound, as well as the dynamic loads and noise emission due to tire vibration. The method is first implemented and test-ed in the FlowVision software package. The results obtained with FlowVision are compared with those obtained with the LMS Virtual.Lab Acoustics package and a number of differences in the acoustic field are highlighted.

  4. В статье представлена квазипериодическая двухкомпонентная динамическая модель, которая позволяет воспроизводить временные и спектральные характеристики кардиосигнала, в том числе вариабельность сердечного ритма. Описана методика определения морфологии кардиоцикла для синтеза кардиосигнала реалистичной формы. Определен способ описания динамической системы кардиосигнала путем построения трехмерного фазового пространства и уравнений, которые описывают траекторию движения точек в этом пространстве. Представлена методика решения уравнений движения в трехмерном фазовом пространстве динамической системы кардиосигнала с применением метода Рунге–Кутты четвертого порядка. На основе модели разработан алгоритм и программный комплекс, с помощью которого проведен эксперимент по синтезу кардиосигнала и исследована взаимосвязь его диагностических признаков.

    In the article, a quasi-periodic two-component dynamical model with possibility of defining the cardio-cycle morphology, that provides the model with an ability of generating a temporal and a spectral cardiosignal characteristics, including heart rate variability is described. A technique for determining the cardio-cycle morphology to provide realistic cardio-signal form is defined. A method for defining cardio-signal dynamical system by the way of determining a three-dimensional state space and equations which describe a trajectory of point’s motion in this space is presented. A technique for solving equations of motion in the three-dimensional state space of dynamical cardio-signal system using the fourth-order Runge–Kutta method is presented. Based on this model, algorithm and software package are developed. Using software package, a cardio-signal synthesis experiment is conducted and the relationship of cardio-signal diagnostic features is analyzed.

    Views (last year): 5. Citations: 6 (RSCI).
  5. Краснобаева Л.А., Волков И.А., Якушевич Л.В.
    Динамика кинков, активированных в генах ADRB2, NOS1 и IL-5
    Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 391-399

    В данной работе метод концентраций применен к геному человека. Рассчитаны динамические характеристики трех различных генов (ADRB2, NOS1, IL-5) с установленным влиянием на течение бронхиальной астмы.

    Krasnobaeva L.A., Volkov I.A., Yakushevich L.V.
    Dynamics of kinks activated in the genes ADRB2, NOS1 and IL-5
    Computer Research and Modeling, 2012, v. 4, no. 2, pp. 391-399

    In this paper the method of concentrations is applied to the human genome. The dynamical characteristics of three different genes (ADRB2, NOS1, IL-5) with the established effect on bronchial asthma.

    Views (last year): 1. Citations: 2 (RSCI).
  6. Алмасри А., Цибулин В.Г.
    Анализ динамической системы «жертва – хищник – суперхищник»: семейство равновесий и его разрушение
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1601-1615

    В работе исследуется динамика конечномерной модели, описывающей взаимодействие трех популяций: жертвы $x(t)$, потребляющего ее хищника $y(t)$ и суперхищника $z(t)$, питающегося обоими видами. Математически задача записывается в виде системы нелинейных дифференциальных уравнений первого порядка с правой частью $[x(1-x)-(y+z)g;\,\eta_1^{}yg-d_1^{}f-\mu_1^{}y;\,\eta_2^{}zg+d_2^{}f-\mu_2^{}z]$, где $\eta_j^{}$, $d_j^{}$, $\mu_j^{}$ ($j=1,\,2$) — положительные коэффициенты. Рассматриваемая модель относится к классу кoсимметричных динамических систем при функциональном отклике Лотки – Вольтерры $g=x$, $f=yz$ и дополнительных условиях на параметры: $\mu_2^{}=d_2^{}\left(1+\frac{\mu_1^{}}{d_1^{}}\right)$, $\eta_2^{}=d_2^{}\left(1+\frac{\eta_1^{}}{d_1^{}}\right)$. В этом случае формируется семейство равновесий в виде прямой в фазовом пространстве. Проанализирована устойчивость равновесий семейства и изолированных равновесий, построены карты существования стационарных решений и предельных циклов. Изучено разрушение семейства при нарушении условий косимметрии и использовании моделей Хoллинга $g(x)=\frac x{1+b_1^{}x}$ и Беддингтона–ДеАнгелиса $f(y,\,z)=\frac{yz}{1+b_2^{}y+b_3^{}z}$. Для этого применяется аппарат теории косимметрии В.И. Юдовича, включающий вычисление косимметрических дефектов и селективных функций. С использованием численного эксперимента проанализированы инвазивные сценарии: внедрение суперхищника в систему «хищник–жертва», выдавливание хищника или суперхищника.

    Almasri A., Tsybulin V.G.
    A dynamic analysis of a prey – predator – superpredator system: a family of equilibria and its destruction
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1601-1615

    The paper investigates the dynamics of a finite-dimensional model describing the interaction of three populations: prey $x(t)$, its consuming predator $y(t)$, and a superpredator $z(t)$ that feeds on both species. Mathematically, the problem is formulated as a system of nonlinear first-order differential equations with the following right-hand side: $[x(1-x)-(y+z)g;\,\eta_1^{}yg-d_1^{}f-\mu_1^{}y;\,\eta_2^{}zg+d_2^{}f-\mu_2^{}z]$, where $\eta_j^{}$, $d_j^{}$, $\mu_j^{}$ ($j=1,\,2$) are positive coefficients. The considered model belongs to the class of cosymmetric dynamical systems under the Lotka\,--\,Volterra functional response $g=x$, $f=yz$, and two parameter constraints: $\mu_2^{}=d_2^{}\left(1+\frac{\mu_1^{}}{d_1^{}}\right)$, $\eta_2^{}=d_2^{}\left(1+\frac{\eta_1^{}}{d_1^{}}\right)$. In this case, a family of equilibria is being of a straight line in phase space. We have analyzed the stability of the equilibria from the family and isolated equilibria. Maps of stationary solutions and limit cycles have been constructed. The breakdown of the family is studied by violating the cosymmetry conditions and using the Holling model $g(x)=\frac x{1+b_1^{}x}$ and the Beddington–DeAngelis model $f(y,\,z)=\frac{yz}{1+b_2^{}y+b_3^{}z}$. To achieve this, the apparatus of Yudovich's theory of cosymmetry is applied, including the computation of cosymmetric defects and selective functions. Through numerical experimentation, invasive scenarios have been analyzed, encompassing the introduction of a superpredator into the predator-prey system, the elimination of the predator, or the superpredator.

  7. Жаркова В.В., Щеляев А.Е., Фишер Ю.В.
    Численное моделирование внешнего обтекания спортсмена
    Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 331-344

    В работе описывается численное моделирование процесса внешнего обтекания подвижного спортсмена с целью определения его интегральных характеристик при различных режимах набегающего потока и режимах его движения. Численное моделирование выполнено с помощью программного комплекса вычислительной гидродинамики FlowVision, построенного на решении набора уравнений, описывающих движение жидкости и/или газа в расчетной области, в том числе уравнений сохранения массы, импульса и энергии, уравнений состояния, уравнений моделей турбулентности. Также учитываются подвижные границы расчетной области, изменяющаяся геометрическая форма которых моделирует фазы движения спортсмена, при прохождении трассы. Решение системы уравнений выполняется на декартовой сетке с локальной адаптацией в области высоких градиентов давлений или сложной геометрической формы границы расчетной области. Решение уравнений выполняется с помощью метода конечных объемов, с использованием расщепления по физическим процессам. Разработанная методика была апробирована на примере спортсменов, совершающих прыжки на лыжах с трамплина, в рамках подготовки к Олимпиаде в Сочи в 2014 году. Сравнение результатов численного и натурного эксперимента показало хорошую корреляцию. Технология моделирования состоит из следующих этапов:

    1) разработка постановки задачи внешнего обтекания спортсмена в обращенной постановке, где неподвижный объект исследования обтекается набегающим потоком, со скоростью, равной скорости движения объекта;

    2) разработка технологии изменения геометрической формы границы расчетной области в зависимости от фазы движения спортсмена; разработка методики численного моделирования, включающей в себя определение дискретизации по времени и пространству за счет выбора шага интегрирования и измельчения объемной расчетной сетки;

    3) проведение серии расчетов с использованием геометрических и динамических данных спортсмена из сборной команды.

    Описанная методика универсальна и применима для любых других видов спорта, биомеханических, природных и подобных им технических объектов.

    Zharkova V.V., Schelyaev A.E., Fisher J.V.
    Numerical simulation of sportsman's external flow
    Computer Research and Modeling, 2017, v. 9, no. 2, pp. 331-344

    Numerical simulation of moving sportsman external flow is presented. The unique method is developed for obtaining integral aerodynamic characteristics, which were the function of the flow regime (i.e. angle of attack, flow speed) and body position. Individual anthropometric characteristics and moving boundaries of sportsman (or sports equipment) during the race are taken into consideration.

    Numerical simulation is realized using FlowVision CFD. The software is based on the finite volume method, high-performance numerical methods and reliable mathematical models of physical processes. A Cartesian computational grid is used by FlowVision, the grid generation is a completely automated process. Local grid adaptation is used for solving high-pressure gradient and object complex shape. Flow simulation process performed by solutions systems of equations describing movement of fluid and/or gas in the computational domain, including: mass, moment and energy conservation equations; state equations; turbulence model equations. FlowVision permits flow simulation near moving bodies by means of computational domain transformation according to the athlete shape changes in the motion. Ski jumper aerodynamic characteristics are studied during all phases: take-off performance in motion, in-run and flight. Projected investigation defined simulation method, which includes: inverted statement of sportsman external flow development (velocity of the motion is equal to air flow velocity, object is immobile); changes boundary of the body technology defining; multiple calculations with the national team member data projecting. The research results are identification of the main factors affected to jumping performance: aerodynamic forces, rotating moments etc. Developed method was tested with active sportsmen. Ski jumpers used this method during preparations for Sochi Olympic Games 2014. A comparison of the predicted characteristics and experimental data shows a good agreement. Method versatility is underlined by performing swimmer and skater flow simulation. Designed technology is applicable for sorts of natural and technical objects.

    Views (last year): 29.
  8. Цибулин В.Г., Хосаева З.Х.
    Математическая модель дифференциации общества с социальной напряженностью
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 999-1012

    В статье моделируется развитие во времени многопартийной политической системы с учетом социальной напряженности. Предлагается система нелинейных дифференциальных уравнений относительно долей приверженцев партий и дополнительной скалярной переменной, характеризующей величину напряженности в обществе. Изменение доли каждой партии пропорционально текущему значению, умноженному на коэффициент, который состоит из притока беспартийных, перетоков членов из конкурирующих партий и убыли вследствие роста социальной напряженности. Напряженность прирастает пропорционально долям партий и снижается при их отсутствии. Число партий фиксировано, в модели отсутствуют механизмы объединения существующих или рождения новых партий.

    Для исследования модели использован подход, основанный на выделении условий, при которых данная задача относится к классу косимметричных систем. Это позволяет проанализировать мультистабильность возможных динамических процессов и их разрушение при нарушении косимметрии. Существование косимметрии для системы дифференциальных уравнений обеспечивается наличием дополнительных связей на параметры, и при этом возможно возникновение непрерывных семейств стационарных и нестационарных решений. Для анализа сценариев нарушения косимметрии применяется подход на основе селективной функции. В случае с одной политической партией мультистабильности нет, каждому набору параметров соответствует только одно устойчивое решение. Для системы из двух партий показано, что возможны два семейства равновесий, а также семейство предельных циклов. Представлены результаты численных экспериментов, демонстрирующие разрушение семейств и реализацию различных сценариев, приводящих к стабилизации политической системы с сосуществованием обеих партий или к исчезновению одной из партий, когда часть населения перестает поддерживать одну из партий и становится безразличной.

    Рассматриваемая модель может быть использована для прогнозирования межпартийной борьбы во время предвыборной кампании. В этом случае необходимо учитывать зависимость коэффициентов системы от времени.

    Tsybulin V.G., Khosaeva Z.K.
    Mathematical model of political differentiation under social tension
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 999-1012

    We comsider a model of the dynamics a political system of several parties, accompanied and controlled by the growth of social tension. A system of nonlinear ordinary differential equations is proposed with respect to fractions and an additional scalar variable characterizing the magnitude of tension in society the change of each party is proportional to the current value multiplied by a coefficient that consists of an influx of novice, a flow from competing parties, and a loss due to the growth of social tension. The change in tension is made up of party contributions and own relaxation. The number of parties is fixed, there are no mechanisms in the model for combining existing or the birth of new parties.

    To study of possible scenarios of the dynamic processes of the model we derive an approach based on the selection of conditions under which this problem belongs to the class of cosymmetric systems. For the case of two parties, it is shown that in the system under consideration may have two families of equilibria, as well as a family of limit cycles. The existence of cosymmetry for a system of differential equations is ensured by the presence of additional constraints on the parameters, and in this case, the emergence of continuous families of stationary and nonstationary solutions is possible. To analyze the scenarios of cosymmetry breaking, an approach based on the selective function is applied. In the case of one political party, there is no multistability, one stable solution corresponds to each set of parameters. For the case of two parties, it is shown that in the system under consideration may have two families of equilibria, as well as a family of limit cycles. The results of numerical experiments demonstrating the destruction of the families and the implementation of various scenarios leading to the stabilization of the political system with the coexistence of both parties or to the disappearance of one of the parties, when part of the population ceases to support one of the parties and becomes indifferent are presented.

    This model can be used to predict the inter-party struggle during the election campaign. In this case necessary to take into account the dependence of the coefficients of the system on time.

  9. Аксёнов А.А., Жлуктов С.В., Похилко В.И., Сорокин К.Э.
    Неявный алгоритм решения уравнений движения несжимаемой жидкости
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 1009-1023

    Для решения уравнений Навье – Стокса в случае несжимаемых течений разработано большое количество методов, наиболее популярными из которых являются методы с коррекцией скорости по алгоритму SIMPLE, аналогом которого является метод расщепления по физическим переменным. Данные методы, разработанные еще в прошлом веке, использовались для решения достаточно простых задач — расчета как стационарных течений, так и нестационарных, в которых границы расчетной области были неподвижны. В настоящее время задачи вычислительной гидродинамики существенно усложнились. Интерес представляют задачи с движением тел в расчетной области, движением контактных границ, кавитацией и задачи с динамической локальной адаптацией расчетной сетки. При этом расчетная сетка меняется, что приводит к нарушению условия дивергентности скорости на ней. Поскольку дивергентные скорости используются не только для уравнений Навье – Стокса, но и для всех остальных уравнений математической модели движения жидкости — моделей турбулентности, массопереноса и сохранения энергии, нарушение этого условия ведет к численным ошибкам и, зачастую, к расхождению вычислительного алгоритма.

    В статье представлен неявный метод расщепления по физическим переменным, который использует дивергентные скорости с данного шага по времени для решения несжимаемых уравнений Навье – Стокса. Метод разработан для расчета течений при наличии подвижных и контактных границ, моделируемых в постановке Эйлера. Метод позволяет проводить расчеты с шагом интегрирования, на порядки превышающем явный шаг по времени (число Куранта – Фридрихcа – Леви $CFL\gg1$). В данной статье представлен вариант метода для несжимаемых течений. Вариант метода, позволяющий рассчитывать движение жидкости и газа при любых числах Маха, будет опубликован в ближайшее время. Метод для полностью сжимаемых течений реализован в программном комплексе FlowVision.

    В статье приводятся результаты численного решения классической задачи обтекания кругового цилиндра при малых числах Рейнольдса ($50<Re<140$), при которых ламинарное обтекание цилиндра становиться нестационарным и образуется дорожка Кармана. Показано хорошее совпадение расчетов с экспериментальными данными, опубликованными в классических работах Ван-Дайка и Танеды.

    Aksenov A.A., Zhluktov S.V., Pokhilko V.I., Sorokin K.E.
    Implicit algorithm for solving equations of motion of incompressible fluid
    Computer Research and Modeling, 2023, v. 15, no. 4, pp. 1009-1023

    A large number of methods have been developed to solve the Navier – Stokes equations in the case of incompressible flows, the most popular of which are methods with velocity correction by the SIMPLE algorithm and its analogue — the method of splitting by physical variables. These methods, developed more than 40 years ago, were used to solve rather simple problems — simulating both stationary flows and non-stationary flows, in which the boundaries of the calculation domain were stationary. At present, the problems of computational fluid dynamics have become significantly more complicated. CFD problems are involving the motion of bodies in the computational domain, the motion of contact boundaries, cavitation and tasks with dynamic local adaptation of the computational mesh. In this case the computational mesh changes resulting in violation of the velocity divergence condition on it. Since divergent velocities are used not only for Navier – Stokes equations, but also for all other equations of the mathematical model of fluid motion — turbulence, mass transfer and energy conservation models, violation of this condition leads to numerical errors and, often, to undivergence of the computational algorithm.

    This article presents an implicit method of splitting by physical variables that uses divergent velocities from a given time step to solve the incompressible Navier – Stokes equations. The method is developed to simulate flows in the case of movable and contact boundaries treated in the Euler paradigm. The method allows to perform computations with the integration step exceeding the explicit time step by orders of magnitude (Courant – Friedrichs – Levy number $CFL\gg1$). This article presents a variant of the method for incompressible flows. A variant of the method that allows to calculate the motion of liquid and gas at any Mach numbers will be published shortly. The method for fully compressible flows is implemented in the software package FlowVision.

    Numerical simulating classical fluid flow around circular cylinder at low Reynolds numbers ($50 < Re < 140$), when laminar flow is unsteady and the Karman vortex street is formed, are presented in the article. Good agreement of calculations with the experimental data published in the classical works of Van Dyke and Taneda is demonstrated.

  10. Лобанов А.И., Миров Ф.Х.
    Использование разностных схем для уравнения переноса со стоком при моделировании энергосетей
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1149-1164

    Современные системы транспортировки электроэнергии представляют собой сложные инженерные системы. В состав таких систем входят как точечные объекты (производители электроэнергии, потребители, трансформаторные подстанции), так и распределенные (линии электропередач). При создании математических моделей такие сооружения представляются в виде графов с различными типами узлов. Для исследования динамических эффектов в таких системах приходится решать численно систему дифференциальных уравнений в частных производных гиперболического типа.

    В работе использован подход, аналогичный уже примененным ранее при моделировании подобных задач. Использован вариант метода расщепления. Авторами предложен свой способ расщепления. В отличие от большинства известных работ расщепление проводится не по физическим процессам (перенос без диссипации, отдельно диссипативные процессы), а на перенос со стоковыми членами и «обменную» часть. Такое расщепление делает возможным построение гибридных схем для инвариантов Римана, обладающих высоким порядком аппроксимации и минимальной диссипативной погрешностью. Для однофазной ЛЭП приведен пример построения такой гибридной разностной схемы. Предложенная разностная схема строится на основе анализа свойств схем в пространстве неопределенных коэффициентов.

    Приведены примеры расчетов модельной задачи с использованием предложенного расщепления и построенной разностной схемы. На примере численных расчетов показано, что разностная схема позволяет численно воспроизводить возникающие области больших градиентов. Показано, что разностная схема позволяет обнаружить резонансы в подобных системах.

    Lobanov A.I., Mirov F.Kh.
    On the using the differential schemes to transport equation with drain in grid modeling
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1149-1164

    Modern power transportation systems are the complex engineering systems. Such systems include both point facilities (power producers, consumers, transformer substations, etc.) and the distributed elements (f.e. power lines). Such structures are presented in the form of the graphs with different types of nodes under creating the mathematical models. It is necessary to solve the system of partial differential equations of the hyperbolic type to study the dynamic effects in such systems.

    An approach similar to one already applied in modeling similar problems earlier used in the work. New variant of the splitting method was used proposed by the authors. Unlike most known works, the splitting is not carried out according to physical processes (energy transport without dissipation, separately dissipative processes). We used splitting to the transport equations with the drain and the exchange between Reimann’s invariants. This splitting makes possible to construct the hybrid schemes for Riemann invariants with a high order of approximation and minimal dissipation error. An example of constructing such a hybrid differential scheme is described for a single-phase power line. The difference scheme proposed is based on the analysis of the properties of the schemes in the space of insufficient coefficients.

    Examples of the model problem numerical solutions using the proposed splitting and the difference scheme are given. The results of the numerical calculations shows that the difference scheme allows to reproduce the arising regions of large gradients. It is shown that the difference schemes also allow detecting resonances in such the systems.

Pages: « first previous next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"