Результаты поиска по 'дискретные модели':
Найдено статей: 86
  1. Никулин В.Н., Одинцова А.С.
    Статистически справедливая цена на европейские опционы колл согласно дискретной модели «среднее–дисперсия»
    Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 861-874

    Мы рассматриваем портфель с опционом колл и соответствующим базовым активом при стандартном предположении, что рыночная цена является случайной величиной с логнормальным распределением. Минимизируя дисперсию (риск хеджирования) портфеля на дату погашения опциона, мы находим оптимальное соотношение опциона и актива в портфеле. Как прямое следствие мы получим статистически справедливую цену опциона колл в явной форме (случай опциона пут может быть рассмотрен аналогичным образом). В отличие от известной теории Блэка–Шоулза, любой портфель не может рассматриваться свободным от риска, потому что никаких дополнительных сделок в течение контракта не предполагается, но среднестатистический риск, относящийся к достаточно большому количеству независимых портфелей, стремится к нулю асимптотически. Это свойство иллюстрируется в экспериментальном разделе на основе ежедневных цен акций 37-ми лидирующих американских компаний за период времени, начиная с апреля 2006 года по январь 2013 года.

    Nikulin V.N., Odintsova A.S.
    Statistically fair price for the European call options according to the discreet mean/variance model
    Computer Research and Modeling, 2014, v. 6, no. 5, pp. 861-874

    We consider a portfolio with call option and the corresponding underlying asset under the standard assumption that stock-market price represents a random variable with lognormal distribution. Minimizing the variance hedging risk of the portfolio on the date of maturity of the call option we find a fraction of the asset per unit call option. As a direct consequence we derive the statistically fair lookback call option price in explicit form. In contrast to the famous Black–Scholes theory, any portfolio cannot be regarded as  risk-free because no additional transactions are supposed to be conducted over the life of the contract, but the sequence of independent portfolios will reduce risk to zero asymptotically. This property is illustrated in the experimental section using a dataset of daily stock prices of 37 leading US-based companies for the period from April 2006 to January 2013.

    Views (last year): 1.
  2. Вигонт В.А., Миронычева Е.С., Топаж А.Г.
    Модификация модели роста грибов Чантера–Торнли и ее анализ средствами многоподходного имитационного моделирования
    Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 375-385

    Классическая математическая модель выращивания грибов Чантера–Торнли модифицирована и реализована в среде имитационного моделирования AnyLogic с одновременным использованием элементов системной динамики, дискретно-событийного и агентного подхода. Проведено численное исследование построенной модели и решена оптимизационная задача нахождения возраста срезания плодовых тел, обеспечивающего максимальный интегральный урожай грибов по всем «волнам» плодообразования.

    Vigont V.A., Mironycheva O.S., Topaj A.G.
    Modification of Chanter–Thornley mushroom growth model and its analysis by means of multiapproach simulation
    Computer Research and Modeling, 2015, v. 7, no. 2, pp. 375-385

    Classical Chanter–Thornley model of mushroom growth has been modified and implemented in AnyLogic simulation environment by means of system dynamics, discrete-event and agent-based approaches. A numerical case study of the model is presented and the problem of optimum age at harvest, providing the maximum integral yield for all fruiting “waves” is solved.

    Views (last year): 3. Citations: 3 (RSCI).
  3. Шумов В.В.
    Модели борьбы с силовыми актами в морском пространстве
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 907-920

    Моделирование борьбы с террористическими, пиратскими и разбойными актами на море является актуальной научной задачей в силу распространенности силовых актов и недостаточного количества работ по данной проблематике. Действия пиратов и террористов разнообразны. С использованием судна-базы они могут нападать на суда на удалении до 450–500 миль от побережья. Выбрав цель, они ее преследуют и с применением оружия идут на абордаж. Действия по освобождению судна, захваченного пиратами или террористами, включают: блокирование судна, прогноз мест возможного нахождения пи- ратов на судне, проникновение (с борта на борт, по воздуху или из-под воды) и зачистка помещений судна. Анализ специальной литературы по действиям пиратов и террористов показал, что силовой акт (и действия по его нейтрализации) состоит из двух этапов: во-первых, это блокирование судна, заключающееся в принуждении к его остановке, и, во-вторых, нейтрализация команды (группы террористов, пиратов), включая проникновение на судно (корабль) и его зачистку. Этапам цикла поставлены в соответствие показатели — вероятность блокирования и вероятность нейтрализации. Переменными модели силового акта являются количество судов (кораблей, катеров) у нападающих и обороняющихся, а также численность группы захвата нападающих и экипажа судна — жертвы атаки. Параметры модели (показатели корабельного и боевого превосходства) оценены методом максимального правдоподобия с использованием международной базы по инцидентам на море. Значения названных параметров равны 7.6–8.5. Столь высокие значения параметров превосходства отражают возможности сторон по действиям в силовых актах. Предложен и статистически обоснован аналитический метод расчета параметров превосходства. В модели учитываются следующие показатели: возможности сторон по обнаружению противника, скоростные и маневренные характеристики судов, высота судна и характеристики средств абордажа, характеристики оружия и средств защиты и др. С использованием модели Г. Беккера и теории дискретного выбора оценена вероятность отказа от силового акта. Значимость полученных моделей для борьбы с силовыми актами в морском пространстве заключается в возможности количественного обоснования мер по защите судна от пиратских и террористических атак и мер сдерживания, направленных на предотвращение атак (наличие на борту судна вооруженной охраны, помощь военных кораблей и вертолетов).

    Shumov V.V.
    Mathematical models of combat and military operations
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 907-920

    Modeling the fight against terrorist, pirate and robbery acts at sea is an urgent scientific task due to the prevalence of force acts and the insufficient number of works on this issue. The actions of pirates and terrorists are diverse. Using a base ship, they can attack ships up to 450–500 miles from the coast. Having chosen the target, they pursue it and use the weapons to board the ship. Actions to free a ship captured by pirates or terrorists include: blocking the ship, predicting where pirates might be on the ship, penetrating (from board to board, by air or from under water) and cleaning up the ship’s premises. An analysis of the special literature on the actions of pirates and terrorists showed that the act of force (and actions to neutralize it) consists of two stages: firstly, blocking the vessel, which consists in forcing it to stop, and secondly, neutralizing the team (terrorist groups, pirates), including penetration of a ship (ship) and its cleaning. The stages of the cycle are matched by indicators — the probability of blocking and the probability of neutralization. The variables of the act of force model are the number of ships (ships, boats) of the attackers and defenders, as well as the strength of the capture group of the attackers and the crew of the ship - the victim of the attack. Model parameters (indicators of naval and combat superiority) were estimated using the maximum likelihood method using an international database of incidents at sea. The values of these parameters are 7.6–8.5. Such high values of superiority parameters reflect the parties' ability to act in force acts. An analytical method for calculating excellence parameters is proposed and statistically substantiated. The following indicators are taken into account in the model: the ability of the parties to detect the enemy, the speed and maneuverability characteristics of the vessels, the height of the vessel and the characteristics of the boarding equipment, the characteristics of weapons and protective equipment, etc. Using the Becker model and the theory of discrete choice, the probability of failure of the force act is estimated. The significance of the obtained models for combating acts of force in the sea space lies in the possibility of quantitative substantiation of measures to protect the ship from pirate and terrorist attacks and deterrence measures aimed at preventing attacks (the presence of armed guards on board the ship, assistance from warships and helicopters).

  4. Поддубный В.В., Романович О.В.
    Математическое моделирование оптимального рынка конкурирующих товаров в условиях лага поставок
    Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 431-450

    Предлагается нелинейная рестриктивная (подчиняющаяся ограничениям типа неравенств) динамическая математическая модель свободного рынка многих товаров в условиях лага поставок товаров на рынок и линейной зависимости вектора спроса от вектора цен. Ставится задача отыскания оптимальных с точки зрения прибыли продавца цен и поставок товаров на рынок. Показано, что максимальная суммарная прибыль продавца выражается непрерывной кусочногладкой функцией вектора объемов поставок с разрывом производных на границах зон товарного дефицита, затоваривания и динамического равновесия рынка по каждому из товаров. С использованием аппарата предикатных функций построен вычислительный алгоритм оптимизации поставок товаров на рынок.

    Poddubny V.V., Romanovich O.V.
    Mathematical modeling of the optimal market of competing goods in conditions of deliveries lags
    Computer Research and Modeling, 2012, v. 4, no. 2, pp. 431-450

    The nonlinear restrictive (with restrictions of the inequalities type) dynamic mathematical model of the committed competition vacant market of many goods in conditions of the goods deliveries time-lag and of the linear dependency of the demand vector from the prices vector is offered. The problem of finding of prices and deliveries of goods into the market which are optimal (from seller’s profit standpoint) is formulated. It is shown the seller’s total profit maximum is expressing by the continuous piecewise smooth function of vector of volumes of deliveries with breakup of the derivative on borders of zones of the goods deficit, of the overstocking and of the dynamic balance of demand and offer of each of goods. With use of the predicate functions technique the computing algorithm of optimization of the goods deliveries into the market is built.

    Views (last year): 1. Citations: 3 (RSCI).
  5. Жданова О.Л., Неверова Г.П., Фрисман Е.Я.
    Динамика планктонного сообщества с учетом трофических характеристик зоопланктона
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 525-554

    Предложена четырехкомпонентная модель планктонного сообщества с дискретным временем, учитывающая конкурентные взаимоотношения между разными группами фитопланктона и трофические характеристики зоопланктона: рассматривается деление зоопланктона на хищный и нехищный типы. Изъятие нехищного зоопланктона хищным явно представлено в модели. Нехищный зоопланктон питается фитопланктоном, включающим два конкурирующих компонента: токсичный и нетоксичный тип, при этом последний пригоден в пищу для зоопланктона. Модель двух связанных уравнений Рикера, ориентированная на описание динамики конкурентного сообщества, используется для описания взаимодействия двух типов фитопланктона и позволяет неявно учитывать ограничение роста биомассы каждого из компонентов-конкурентов доступностью внешних ресурсов. Изъятие жертв хищниками описывается трофической функцией Холлинга типа II с учетом насыщения хищника.

    Анализ сценариев перехода от стационарной динамики к колебаниям численности сообщества показал, что потеря устойчивости нетривиального равновесия, соответствующего существованию полного сообщества, может происходить как через каскад бифуркаций удвоения периода, так и бифуркацию Неймарка – Сакера, ведущую к возникновению квазипериодических колебаний. Предложенная в данной работе модель, являясь достаточно простой, демонстрирует динамику сообщества подобную той, что наблюдается в естественных системах и экспериментах: с отставанием колебаний хищника от жертвы примерно на четверть периода, длиннопериодические противофазные циклы хищника и жертвы, а также скрытые циклы, при которых плотность жертв остается практически постоянной, а плотность хищников флуктуирует, демонстрируя влияние быстрой эволюции, маскирующей трофическое взаимодействие. При этом вариация внутрипопуляционных параметров фито- или зоопланктона может приводить к выраженным изменениям динамического режима в сообществе: резким переходам от регулярной к квазипериодической динамике и далее к точным циклам с небольшим периодом или даже стационарной динамике. Квазипериодическая динамика может возникать при достаточно небольшихск оростях роста фитопланктона, соответствующих стабильной или регулярной динамике сообщества. Смена динамического режима в этой области (переход от регулярной динамики к квазипериодической и наоборот) может происходить за счет вариации начальных условий или внешнего воздействия, изменяющего текущие численности компонентов и смещающего систему в бассейн притяжения другого динамического режима.

    Zhdanova O.L., Neverova G.P., Frisman E.Y.
    Modeling the dynamics of plankton community considering the trophic characteristics of zooplankton
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 525-554

    We propose a four-component model of a plankton community with discrete time. The model considers the competitive relationships of phytoplankton groups exhibited between each other and the trophic characteristics zooplankton displays: it considers the division of zooplankton into predatory and non-predatory components. The model explicitly represents the consumption of non-predatory zooplankton by predatory. Non-predatory zooplankton feeds on phytoplankton, which includes two competing components: toxic and non-toxic types, with the latter being suitable for zooplankton food. A model of two coupled Ricker equations, focused on describing the dynamics of a competitive community, describes the interaction of two phytoplanktons and allows implicitly taking into account the limitation of each of the competing components of biomass growth by the availability of external resources. The model describes the prey consumption by their predators using a Holling type II trophic function, considering predator saturation.

    The analysis of scenarios for the transition from stationary dynamics to fluctuations in the population size of community members showed that the community loses the stability of the non-trivial equilibrium corresponding to the coexistence of the complete community both through a cascade of period-doubling bifurcations and through a Neimark – Sacker bifurcation leading to the emergence of quasi-periodic oscillations. Although quite simple, the model proposed in this work demonstrates dynamics of comunity similar to that natural systems and experiments observe: with a lag of predator oscillations relative to the prey by about a quarter of the period, long-period antiphase cycles of predator and prey, as well as hidden cycles in which the prey density remains almost constant, and the predator density fluctuates, demonstrating the influence fast evolution exhibits that masks the trophic interaction. At the same time, the variation of intra-population parameters of phytoplankton or zooplankton can lead to pronounced changes the community experiences in the dynamic mode: sharp transitions from regular to quasi-periodic dynamics and further to exact cycles with a small period or even stationary dynamics. Quasi-periodic dynamics can arise at sufficiently small phytoplankton growth rates corresponding to stable or regular community dynamics. The change of the dynamic mode in this area (the transition from stable dynamics to quasi-periodic and vice versa) can occur due to the variation of initial conditions or external influence that changes the current abundances of components and shifts the system to the basin of attraction of another dynamic mode.

  6. Мельникова И.В., Бовкун В.А.
    Связь между дискретными финансовыми моделями и непрерывными моделями с процессами Винера и Пуассона
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 781-795

    Работа посвящена исследованию связей между дискретными и непрерывными моделями финансовых процессов и их вероятностных характеристик. Во-первых, установлена связь между процессами цен акций, хеджирующего портфеля и опционов в моделях, обусловленных биномиальными возмущениями и предельными для них возмущениями типа броуновского движения. Во-вторых, указаны аналоги в коэффициентах стохастических уравнений с различными случайными процессами, непрерывными и скачкообразными, и в коэффициентах соответствующих детерминированных уравнений для их вероятностных характеристик.

    Изложение результатов исследования связей и нахождения аналогий, полученных в настоящей работе, привело к необходимости адекватного изложения предварительных сведений и результатов из финансовой математики, а также описания связанных с ней объектов стохастического анализа.

    В работе частично новые и известные результаты изложены в доступной форме для тех, кто не является специалистом по финансовой математике и стохастическому анализу и кому эти результаты важны с точки зрения приложений. Конкретно, представлены следующие разделы.

    • В одно- и $n$-периодных биномиальных моделях предложен единый подход к определению на вероятностном пространстве риск-нейтральной меры, с которой дисконтированная цена опциона становится мартингалом. Полученная мартингальная формула для цены опциона пригодна для численного моделирования. В следующих разделах подход на основе риск-нейтральных мер применяется для исследования финансовых процессов в моделях непрерывного времени.

    • В непрерывном времени рассмотрены модели цены акций, хеджирующего портфеля и опциона в форме стохастических уравнений с интегралом Ито по броуновскому движению и по компенсированному процессу Пуассона. Изучение свойств процессов, являющихся решениями стохастических уравнений, в этом разделе опирается на один из центральных объектов стохастического анализа — формулу Ито, методике применения которой уделено особое внимание.

    • Представлена знаменитая формула Блэка –Шоулза, дающая решение уравнения в частных производных для функции $v(t, x)$, которая при подстановке $x = S (t)$, где $S(t)$ — цена акций в момент времени $t$, дает цену опциона в модели с непрерывным возмущением броуновским движением.

    • Предложен аналог формулы Блэка – Шоулза для случая модели со скачкообразным возмущением процессом Пуассона. Вывод этой формулы опирается на технику риск-нейтральных мер и лемму независимости.

    Melnikova I.V., Bovkun V.A.
    Connection between discrete financial models and continuous models with Wiener and Poisson processes
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 781-795

    The paper is devoted to the study of relationships between discrete and continuous models financial processes and their probabilistic characteristics. First, a connection is established between the price processes of stocks, hedging portfolio and options in the models conditioned by binomial perturbations and their limit perturbations of the Brownian motion type. Secondly, analogues in the coefficients of stochastic equations with various random processes, continuous and jumpwise, and in the coefficients corresponding deterministic equations for their probabilistic characteristics. Statement of the results on the connections and finding analogies, obtained in this paper, led to the need for an adequate presentation of preliminary information and results from financial mathematics, as well as descriptions of related objects of stochastic analysis. In this paper, partially new and known results are presented in an accessible form for those who are not specialists in financial mathematics and stochastic analysis, and for whom these results are important from the point of view of applications. Specifically, the following sections are presented.

    • In one- and n-period binomial models, it is proposed a unified approach to determining on the probability space a risk-neutral measure with which the discounted option price becomes a martingale. The resulting martingale formula for the option price is suitable for numerical simulation. In the following sections, the risk-neutral measures approach is applied to study financial processes in continuous-time models.

    • In continuous time, models of the price of shares, hedging portfolios and options are considered in the form of stochastic equations with the Ito integral over Brownian motion and over a compensated Poisson process. The study of the properties of these processes in this section is based on one of the central objects of stochastic analysis — the Ito formula. Special attention is given to the methods of its application.

    • The famous Black – Scholes formula is presented, which gives a solution to the partial differential equation for the function $v(t, x)$, which, when $x = S (t)$ is substituted, where $S(t)$ is the stock price at the moment time $t$, gives the price of the option in the model with continuous perturbation by Brownian motion.

    • The analogue of the Black – Scholes formula for the case of the model with a jump-like perturbation by the Poisson process is suggested. The derivation of this formula is based on the technique of risk-neutral measures and the independence lemma.

Pages: « first previous

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"