Результаты поиска по 'спуск':
Найдено статей: 35
  1. Многомерные данные, при использовании значительно большего количества признаков относительно меньшего числа наблюдений, порождают хорошо известную проблему переопределённой задачи. В связи с этим, представляется целесообразным описание данных в терминах меньшего числа мета-признаков, которые вычисляются при помощи так называемых матричных факторизаций. Такие факторизации способствуют уменьшению случайного шума при сохранении наиболее существенной информации. Три новых и взаимосвязанных метода предложены в этой статье: 1) факторизационный механизм градиентного спуска с двумя (согласно размерности микрочипа) гибкими и адаптируемыми параметрами обучения, включая явные формулы их автоматического пересчета, 2) непараметрический критерий для отбора количества факторов, и 3) неотрицательная модификация градиентной факторизации, которая не требует дополнительных вычислительных затрат в сравнении с базовой моделью. Мы иллюстрируем эффективность предложенных методов в приложении к задаче направляемой классификации данных в области биоинформатики.

    Microarray datasets are highly dimensional, with a small number of collected samples in comparison to thousands of features. This poses a significant challenge that affects the interpretation, applicability and validation of the analytical results. Matrix factorizations have proven to be a useful method for describing data in terms of a small number of meta-features, which reduces noise, while still capturing the essential features of the data. Three novel and mutually relevant methods are presented in this paper: 1) gradient-based matrix factorization with two adaptive learning rates (in accordance with the number of factor matrices) and their automatic updates; 2) nonparametric criterion for the selection of the number of factors; and 3) nonnegative version of the gradient-based matrix factorization which doesn't require any extra computational costs in difference to the existing methods. We demonstrate effectiveness of the proposed methods to the supervised classification of gene expression data.

    Citations: 4 (RSCI).
  2. Зеленков Г.А., Свириденко А.Б.
    Подход к разработке алгоритмов ньютоновских методов безусловной оптимизации, программная реализация и сравнение эффективности
    Компьютерные исследования и моделирование, 2013, т. 5, № 3, с. 367-377

    Предложен подход к увеличению эффективности алгоритма Гилла и Мюррея к построению ньютоновских методов безусловной оптимизации с регулировкой шага, основанных на факторизации Холецкого. Доказано, что стратегия выбора направления спуска определяет и решение проблемы масштабирования шагов при спуске, и аппроксимацию не квадратичными функциями, и интеграцию с методом доверительной окрестности.

    Zelenkov G.A., Sviridenko A.B.
    Approach to development of algorithms of Newtonian methods of unconstrained optimization, their software implementation and benchmarking
    Computer Research and Modeling, 2013, v. 5, no. 3, pp. 367-377

    The approach to increase efficiency of Gill and Murray's algorithm of Newtonian methods of unconstrained optimization with step adjustment creation is offered, rests on Cholesky’s factorization. It is proved that the strategy of choice of the descent direction also determines the solution of the problem of scaling of steps at descent, and approximation by non-quadratic functions, and integration with a method of a confidential vicinity.

    Views (last year): 2. Citations: 7 (RSCI).
  3. Свириденко А.Б.
    Прямые мультипликативные методы для разреженных матриц. Несимметричные линейные системы
    Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 833-860

    Малая практическая ценность многих численных методов решения несимметричных систем линейных уравнений с плохо обусловленными матрицами объясняется тем, что эти методы в реальных условиях ведут себя совсем иначе, чем в случае точных вычислений. Исторически вопросам устойчивости не отводилось достаточного внимания, как в численной алгебре «средних размеров», а делался акцент на решении задач максимального порядка при данных возможностях вычислительной машины, в том числе за счет некоторой потери точности результатов. Поэтому главными объектами исследования были: наиболее целесообразное хранение информации, заключенной в разреженной матрице; поддержание наибольшей степени ее разреженности на всех этапах вычислительного процесса. Таким образом, разработка эффективных численных методов решения неустойчивых систем относится к актуальным проблемам вычислительной математики.

    В данной работе рассмотрен подход к построению численно устойчивых прямых мультипликативных методов решения систем линейных уравнений, учитывающих разреженность матриц, представленных в упакованном виде. Преимущество подхода состоит в возможности минимизации заполнения главных строк мультипликаторов без потери точности результатов, причем изменения в позиции очередной обрабатываемой строки матрицы не вносятся, что позволяет использовать статические форматы хранения данных. Рассмотрен формат хранения разреженных матриц, преимущество которого состоит в возможности параллельного выполнения любых матричных операций без распаковывания, что значительно сокращает время выполнения операций и объем занимаемой памяти.

    Прямые мультипликативные методы решения систем линейных уравнений являются наиболее приспособленными для решения задач большого размера на ЭВМ: разреженные матрицы системы позволяют получать мультипликаторы, главные строки которых также разрежены, а операция умножения вектора-строки на мультипликатор по трудоемкости пропорциональна числу ненулевых элементов этого мультипликатора.

    В качестве прямого продолжения данной работы в основу построения прямого мультипликативного алгоритма линейного программирования предлагается положить модификацию прямого мультипликативного алгоритма решения систем линейных уравнений, основанного на интеграции техники метода линейного программирования для выбора ведущего элемента. Прямые мультипликативные методы линейного программирования являются наиболее приспособленными и для построения прямого мультипликативного алгоритма задания направления спуска в ньютоновских методах безусловной оптимизации путем интеграции одной из существующих техник построения существенно положительно-определенной матрицы вторых производных.

    Sviridenko A.B.
    Direct multiplicative methods for sparse matrices. Unbalanced linear systems.
    Computer Research and Modeling, 2016, v. 8, no. 6, pp. 833-860

    Small practical value of many numerical methods for solving single-ended systems of linear equations with ill-conditioned matrices due to the fact that these methods in the practice behave quite differently than in the case of precise calculations. Historically, sustainability is not enough attention was given, unlike in numerical algebra ‘medium-sized’, and emphasis is given to solving the problems of maximal order in data capabilities of the computer, including the expense of some loss of accuracy. Therefore, the main objects of study is the most appropriate storage of information contained in the sparse matrix; maintaining the highest degree of rarefaction at all stages of the computational process. Thus, the development of efficient numerical methods for solving unstable systems refers to the actual problems of computational mathematics.

    In this paper, the approach to the construction of numerically stable direct multiplier methods for solving systems of linear equations, taking into account sparseness of matrices, presented in packaged form. The advantage of the approach consists in minimization of filling the main lines of the multipliers without compromising accuracy of the results and changes in the position of the next processed row of the matrix are made that allows you to use static data storage formats. The storage format of sparse matrices has been studied and the advantage of this format consists in possibility of parallel execution any matrix operations without unboxing, which significantly reduces the execution time and memory footprint.

    Direct multiplier methods for solving systems of linear equations are best suited for solving problems of large size on a computer — sparse matrix systems allow you to get multipliers, the main row of which is also sparse, and the operation of multiplication of a vector-row of the multiplier according to the complexity proportional to the number of nonzero elements of this multiplier.

    As a direct continuation of this work is proposed in the basis for constructing a direct multiplier algorithm of linear programming to put a modification of the direct multiplier algorithm for solving systems of linear equations based on integration of technique of linear programming for methods to select the host item. Direct multiplicative methods of linear programming are best suited for the construction of a direct multiplicative algorithm set the direction of descent Newton methods in unconstrained optimization by integrating one of the existing design techniques significantly positive definite matrix of the second derivatives.

    Views (last year): 20. Citations: 2 (RSCI).
  4. Свириденко А.Б.
    Прямые мультипликативные методы для разреженных матриц. Линейное программирование
    Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 143-165

    Мультипликативные методы для разреженных матриц являются наиболее приспособленными для снижения трудоемкости операций решения систем линейных уравнений, выполняемых на каждой итерации симплекс-метода. Матрицы ограничений в этих задачах слабо заполнены ненулевыми элементами, что позволяет получать мультипликаторы, главные столбцы которых также разрежены, а операция умножения вектора на мультипликатор по трудоемкости пропорциональна числу ненулевых элементов этого мультипликатора. Кроме того, при переходе к смежному базису мультипликативное представление достаточно легко корректируется. Для повышения эффективности таких методов требуется уменьшение заполненности мультипликативного представления ненулевыми элементами. Однако на каждой итерации алгоритма к последовательности мультипликаторов добавляется еще один. А трудоемкость умножения, которая линейно зависит от длины последовательности, растет. Поэтому требуется выполнять время от времени перевычисление обратной матрицы, получая ее из единичной. Однако в целом проблема не решается. Кроме того, набор мультипликаторов представляет собой последовательность структур, причем размер этой последовательности неудобно велик и точно неизвестен. Мультипликативные методы не учитывают фактора высокой степени разреженности исходных матриц и ограничения-равенства, требуют определения первоначального базисного допустимого решения задачи и, как следствие, не допускают сокращения размерности задачи линейного программирования и регулярной процедуры сжатия — уменьшения размерности мультипликаторов и исключения ненулевых элементов из всех главных столбцов мультипликаторов, полученных на предыдущих итерациях. Таким образом, разработка численных методов решения задач линейного программирования, позволяющих преодолеть или существенно ослабить недостатки схем реализации симплекс-метода, относится к актуальным проблемам вычислительной математики.

    В данной работе рассмотрен подход к построению численно устойчивых прямых мультипликативных методов решения задач линейного программирования, учитывающих разреженность матриц, представленных в упакованном виде. Преимущество подхода состоит в уменьшении размерности и минимизации заполнения главных строк мультипликаторов без потери точности результатов, причем изменения в позиции очередной обрабатываемой строки матрицы не вносятся, что позволяет использовать статические форматы хранения данных.

    В качестве прямого продолжения данной работы в основу построения прямого мультипликативного алгоритма задания направления спуска в ньютоновских методах безусловной оптимизации предлагается положить модификацию прямого мультипликативного метода линейного программирования путем интеграции одной из существующих техник построения существенно положительно-определенной матрицы вторых производных.

    Sviridenko A.B.
    Direct multiplicative methods for sparse matrices. Linear programming
    Computer Research and Modeling, 2017, v. 9, no. 2, pp. 143-165

    Multiplicative methods for sparse matrices are best suited to reduce the complexity of operations solving systems of linear equations performed on each iteration of the simplex method. The matrix of constraints in these problems of sparsely populated nonzero elements, which allows to obtain the multipliers, the main columns which are also sparse, and the operation of multiplication of a vector by a multiplier according to the complexity proportional to the number of nonzero elements of this multiplier. In addition, the transition to the adjacent basis multiplier representation quite easily corrected. To improve the efficiency of such methods requires a decrease in occupancy multiplicative representation of the nonzero elements. However, at each iteration of the algorithm to the sequence of multipliers added another. As the complexity of multiplication grows and linearly depends on the length of the sequence. So you want to run from time to time the recalculation of inverse matrix, getting it from the unit. Overall, however, the problem is not solved. In addition, the set of multipliers is a sequence of structures, and the size of this sequence is inconvenient is large and not precisely known. Multiplicative methods do not take into account the factors of the high degree of sparseness of the original matrices and constraints of equality, require the determination of initial basic feasible solution of the problem and, consequently, do not allow to reduce the dimensionality of a linear programming problem and the regular procedure of compression — dimensionality reduction of multipliers and exceptions of the nonzero elements from all the main columns of multipliers obtained in previous iterations. Thus, the development of numerical methods for the solution of linear programming problems, which allows to overcome or substantially reduce the shortcomings of the schemes implementation of the simplex method, refers to the current problems of computational mathematics.

    In this paper, the approach to the construction of numerically stable direct multiplier methods for solving problems in linear programming, taking into account sparseness of matrices, presented in packaged form. The advantage of the approach is to reduce dimensionality and minimize filling of the main rows of multipliers without compromising accuracy of the results and changes in the position of the next processed row of the matrix are made that allows you to use static data storage formats.

    As a direct continuation of this work is the basis for constructing a direct multiplicative algorithm set the direction of descent in the Newton methods for unconstrained optimization is proposed to put a modification of the direct multiplier method, linear programming by integrating one of the existing design techniques significantly positive definite matrix of the second derivatives.

    Views (last year): 10. Citations: 2 (RSCI).
  5. Алкуса М.С.
    О некоторых стохастических методах зеркального спуска для условных задач онлайн-оптимизации
    Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 205-217

    Задача выпуклой онлайн-оптимизации естественно возникают в случаях, когда имеет место обновления статистической информации. Для задач негладкой оптимизации хорошо известен метод зеркального спуска. Зеркальный спуск — это расширение субградиентного метода для решения негладких выпуклых задач оптимизации на случай неевкидова расстояния. Работа посвящена стохастическим аналогам недавно предложенных методов зеркального спуска для задач выпуклой онлайн-оптимизации с выпуклыми липшицевыми (вообще говоря, негладкими) функциональными ограничениями. Это означает, что вместо (суб)градиента целевого функционала и функционального ограничения мы используем их стохастические (суб)градиенты. Точнее говоря, допустим, что на замкнутом подмножестве $n$-мерного векторного пространства задано $N$ выпуклых липшицевых негладких функционалов. Рассматривается задача минимизации среднего арифметического этих функционалов с выпуклым липшицевым ограничением. Предложены два метода для решения этой задачи с использованием стохастических (суб)градиентов: адаптивный (не требует знания констант Липшица ни для целевого функционала, ни для ограничения), а также неадаптивный (требует знания константы Липшица для целевого функционала и ограничения). Отметим, что разрешено вычислять стохастический (суб)градиент каждого целевого функционала только один раз. В случае неотрицательного регрета мы находим, что количество непродуктивных шагов равно $O$($N$), что указывает на оптимальность предложенных методов. Мы рассматриваем произвольную прокс-структуру, что существенно для задач принятия решений. Приведены результаты численных экспериментов, позволяющие сравнить работу адаптивного и неадаптивного методов для некоторых примеров. Показано, что адаптивный метод может позволить существенно улучшить количество найденного решения.

    Alkousa M.S.
    On some stochastic mirror descent methods for constrained online optimization problems
    Computer Research and Modeling, 2019, v. 11, no. 2, pp. 205-217

    The problem of online convex optimization naturally occurs in cases when there is an update of statistical information. The mirror descent method is well known for non-smooth optimization problems. Mirror descent is an extension of the subgradient method for solving non-smooth convex optimization problems in the case of a non-Euclidean distance. This paper is devoted to a stochastic variant of recently proposed Mirror Descent methods for convex online optimization problems with convex Lipschitz (generally, non-smooth) functional constraints. This means that we can still use the value of the functional constraint, but instead of (sub)gradient of the objective functional and the functional constraint, we use their stochastic (sub)gradients. More precisely, assume that on a closed subset of $n$-dimensional vector space, $N$ convex Lipschitz non-smooth functionals are given. The problem is to minimize the arithmetic mean of these functionals with a convex Lipschitz constraint. Two methods are proposed, for solving this problem, using stochastic (sub)gradients: adaptive method (does not require knowledge of Lipschitz constant neither for the objective functional, nor for the functional of constraint) and non-adaptivemethod (requires knowledge of Lipschitz constant for the objective functional and the functional of constraint). Note that it is allowed to calculate the stochastic (sub)gradient of each functional only once. In the case of non-negative regret, we find that the number of non-productive steps is $O$($N$), which indicates the optimality of the proposed methods. We consider an arbitrary proximal structure, which is essential for decisionmaking problems. The results of numerical experiments are presented, allowing to compare the work of adaptive and non-adaptive methods for some examples. It is shown that the adaptive method can significantly improve the number of the found solutions.

    Views (last year): 42.
  6. Антонов И.В., Бруттан Ю.В.
    Синтез структуры организованных систем как центральная проблема эволюционной кибернетики
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1103-1124

    В статье рассматриваются подходы к эволюционному моделированию синтеза организованных систем и анализируются методологические проблемы эволюционных вычислений этого направления. На основе анализа работ по эволюционной кибернетике, теории эволюции, теории систем и синергетике сделан вывод о наличии открытых проблем в задачах формализации синтеза организованных систем и моделирования их эволюции. Показано, что теоретической основой для практики эволюционного моделирования являются положения синтетической теории эволюции. Рассмотрено использование виртуальной вычислительной среды для машинного синтеза алгоритмов решения задач. На основе полученных в процессе моделирования результатов сделан вывод о наличии ряда условий, принципиально ограничивающих применимость методов генетического программирования в задачах синтеза функциональных структур. К основным ограничениям относятся необходимость для фитнес-функции отслеживать поэтапное приближение к решению задачи и неприменимость данного подхода к задачам синтеза иерархически организованных систем. Отмечено, что результаты, полученные в практике эволюционного моделирования в целом за все время его существования, подтверждают вывод о принципиальной ограниченности возможностей генетического программирования при решении задач синтеза структуры организованных систем. В качестве источников принципиальных трудностей для машинного синтеза системных структур указаны отсутствие направлений для градиентного спуска при структурном синтезе и отсутствие закономерности случайного появления новых организованных структур. Сделан вывод об актуальности рассматриваемых проблем для теории биологической эволюции. Обосновано положение о биологической специфике практически возможных путей синтеза структуры организованных систем. В качестве теоретической интерпретации обсуждаемой проблемы предложено рассматривать системно-эволюционную концепцию П.К. Анохина. Процесс синтеза функциональных структур рассматривается в этом контексте как адаптивная реакция организмов на внешние условия, основанная на их способности к интегративному синтезу памяти, потребностей и информации о текущих условиях. Приведены результаты актуальных исследований, свидетельствующие в пользу данной интерпретации. Отмечено, что физические основы биологической интегративности могут быть связаны с явлениями нелокальности и несепарабельности, характерными для квантовых систем. Отмечена связь рассматриваемой в данной работе проблематики с проблемой создания сильного искусственного интеллекта.

    Antonov I.V., Bruttan I.V.
    Synthesis of the structure of organised systems as central problem of evolutionary cybernetics
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1103-1124

    The article provides approaches to evolutionary modelling of synthesis of organised systems and analyses methodological problems of evolutionary computations of this kind. Based on the analysis of works on evolutionary cybernetics, evolutionary theory, systems theory and synergetics, we conclude that there are open problems in formalising the synthesis of organised systems and modelling their evolution. The article emphasises that the theoretical basis for the practice of evolutionary modelling is the principles of the modern synthetic theory of evolution. Our software project uses a virtual computing environment for machine synthesis of problem solving algorithms. In the process of modelling, we obtained the results on the basis of which we conclude that there are a number of conditions that fundamentally limit the applicability of genetic programming methods in the tasks of synthesis of functional structures. The main limitations are the need for the fitness function to track the step-by-step approach to the solution of the problem and the inapplicability of this approach to the problems of synthesis of hierarchically organised systems. We note that the results obtained in the practice of evolutionary modelling in general for the whole time of its existence, confirm the conclusion the possibilities of genetic programming are fundamentally limited in solving problems of synthesizing the structure of organized systems. As sources of fundamental difficulties for machine synthesis of system structures the article points out the absence of directions for gradient descent in structural synthesis and the absence of regularity of random appearance of new organised structures. The considered problems are relevant for the theory of biological evolution. The article substantiates the statement about the biological specificity of practically possible ways of synthesis of the structure of organised systems. As a theoretical interpretation of the discussed problem, we propose to consider the system-evolutionary concept of P.K.Anokhin. The process of synthesis of functional structures in this context is an adaptive response of organisms to external conditions based on their ability to integrative synthesis of memory, needs and information about current conditions. The results of actual studies are in favour of this interpretation. We note that the physical basis of biological integrativity may be related to the phenomena of non-locality and non-separability characteristic of quantum systems. The problems considered in this paper are closely related to the problem of creating strong artificial intelligence.

  7. Свириденко А.Б.
    Прямые мультипликативные методы для разреженных матриц. Ньютоновские методы
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 679-703

    Рассматривается численно устойчивый прямой мультипликативный алгоритм решения систем линейных уравнений, учитывающий разреженность матриц, представленных в упакованном виде. Преимущество алгоритма состоит в возможности минимизации заполнения главных строк мультипликаторов без потери точности результатов, причем изменения в позиции очередной обрабатываемой строки матрицы не вносятся, что позволяет использовать статические форматы хранения данных. Решение системы линейных уравнений прямым мультипликативным алгоритмом — это, как и решение с помощью $LU$-разложения, просто другая схема реализации метода исключения Гаусса.

    В данной работе этот алгоритм лежит в основе решения следующих задач.

    Задача 1. Задание направления спуска в ньютоновских методах безусловной оптимизации путем интеграции одной из известных техник построения существенно положительно определенной матрицы. Такой подход позволяет ослабить или снять дополнительные специфические трудности, обусловленные необходимостью решения больших систем уравнений с разреженными матрицами, представленных в упакованном виде.

    Задача 2. Построение новой математической формулировки задачи квадратичного программирования и новой формы задания необходимых и достаточных условий оптимальности. Они достаточно просты и могут быть использованы для построения методов математического программирования, например для поиска минимума квадратичной функции на многогранном множестве ограничений, основанного на решениях систем линейных уравнений, размерность которых не выше числа переменных целевой функции.

    Задача 3. Построение непрерывного аналога задачи минимизации вещественного квадратичного многочлена от булевых переменных и новой формы задания необходимых и достаточных условий оптимальности для разработки методов их решения за полиномиальное время. В результате исходная задача сводится к задаче поиска минимального расстояния между началом координат и угловой точкой выпуклого многогранника (полиэдра), который является возмущением $n$-мерного куба и описывается системой двойных линейных неравенств с верхней треугольной матрицей коэффициентов с единицами на главной диагонали. Исследованию подлежат только две грани, одна из которых или обе содержат вершины, ближайшие к началу координат. Для их вычисления достаточно решить $4n – 4$ систем линейных уравнений и выбрать среди них все ближайшие равноудаленные вершины за полиномиальное время. Задача минимизации квадратичного полинома является $NP$-трудной, поскольку к ней сводится $NP$-трудная задача о вершинном покрытии для произвольного графа. Отсюда следует вывод, что $P = NP$, в основе построения которого лежит выход за пределы целочисленных методов оптимизации.

    Sviridenko A.B.
    Direct multiplicative methods for sparse matrices. Newton methods
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 679-703

    We consider a numerically stable direct multiplicative algorithm of solving linear equations systems, which takes into account the sparseness of matrices presented in a packed form. The advantage of the algorithm is the ability to minimize the filling of the main rows of multipliers without losing the accuracy of the results. Moreover, changes in the position of the next processed row of the matrix are not made, what allows using static data storage formats. Linear system solving by a direct multiplicative algorithm is, like the solving with $LU$-decomposition, just another scheme of the Gaussian elimination method implementation.

    In this paper, this algorithm is the basis for solving the following problems:

    Problem 1. Setting the descent direction in Newtonian methods of unconditional optimization by integrating one of the known techniques of constructing an essentially positive definite matrix. This approach allows us to weaken or remove additional specific difficulties caused by the need to solve large equation systems with sparse matrices presented in a packed form.

    Problem 2. Construction of a new mathematical formulation of the problem of quadratic programming and a new form of specifying necessary and sufficient optimality conditions. They are quite simple and can be used to construct mathematical programming methods, for example, to find the minimum of a quadratic function on a polyhedral set of constraints, based on solving linear equations systems, which dimension is not higher than the number of variables of the objective function.

    Problem 3. Construction of a continuous analogue of the problem of minimizing a real quadratic polynomial in Boolean variables and a new form of defining necessary and sufficient conditions of optimality for the development of methods for solving them in polynomial time. As a result, the original problem is reduced to the problem of finding the minimum distance between the origin and the angular point of a convex polyhedron, which is a perturbation of the $n$-dimensional cube and is described by a system of double linear inequalities with an upper triangular matrix of coefficients with units on the main diagonal. Only two faces are subject to investigation, one of which or both contains the vertices closest to the origin. To calculate them, it is sufficient to solve $4n – 4$ linear equations systems and choose among them all the nearest equidistant vertices in polynomial time. The problem of minimizing a quadratic polynomial is $NP$-hard, since an $NP$-hard problem about a vertex covering for an arbitrary graph comes down to it. It follows therefrom that $P = NP$, which is based on the development beyond the limits of integer optimization methods.

    Views (last year): 7. Citations: 1 (RSCI).
  8. Пасечнюк Д.А., Стонякин Ф.С.
    Об одном методе минимизации выпуклой липшицевой функции двух переменных на квадрате
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 379-395

    В статье получены оценки скорости сходимости по функции для недавно предложенного Ю.Е. Нестеровым метода минимизации выпуклой липшицевой функции двух переменных на квадрате с фиксированной стороной. Идея метода — деление квадрата на меньшие части и постепенное их удаление так, чтобы в оставшейся достаточно малой части все значения целевой функции были достаточно близки к оптимальному. При этом метод заключается вр ешении вспомогательных задач одномерной минимизации вдоль разделяющих отрезков и не предполагает вычисления точного значения градиента целевого функционала. Основной результат работы о необходимом количестве итераций для достижений заданной точности доказан вкла ссе гладких выпуклых функций, имеющих липшицев градиент. При этом отмечено, что свойство липшицевости градиента достаточно потребовать не на всем квадрате, а лишь на некоторых отрезках. Показано, что метод может работать при наличии погрешностей решения вспомогательных одномерных задач, а также при вычислении направлений градиентов. Также описана ситуация, когда возможно пренебречь временными затратами (или уменьшить их) на решение вспомогательных одномерных задач. Для некоторых примеровэк спериментально продемонстрировано, что метод может эффективно работать и на некоторых классах негладких функций. При этом построен пример простой негладкой функции, для которой при неудачном выборе субградиента даже в случае точного решения вспомогательных одномерных задач может не наблюдаться сходимость метода. Проведено сравнение работы метода Ю.Е. Нестерова, метода эллипсоидов и градиентного спуска для некоторых гладких выпуклых функций. Эксперименты показали, что метод Ю.Е. Нестерова может достигать желаемой точности решения задачи за меньшее (в сравнении с другими рассмотренными методами) время. В частности, замечено, что при увеличении точности искомого решения время работы метода Ю.Е. Нестерова может расти медленнее, чем время работы метода эллипсоидов.

    Pasechnyuk D.A., Stonyakin F.S.
    One method for minimization a convex Lipschitz-continuous function of two variables on a fixed square
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 379-395

    In the article we have obtained some estimates of the rate of convergence for the recently proposed by Yu. E.Nesterov method of minimization of a convex Lipschitz-continuous function of two variables on a square with a fixed side. The idea of the method is to divide the square into smaller parts and gradually remove them so that in the remaining sufficiently small part. The method consists in solving auxiliary problems of one-dimensional minimization along the separating segments and does not imply the calculation of the exact value of the gradient of the objective functional. The main result of the paper is proved in the class of smooth convex functions having a Lipschitz-continuous gradient. Moreover, it is noted that the property of Lipschitzcontinuity for gradient is sufficient to require not on the whole square, but only on some segments. It is shown that the method can work in the presence of errors in solving auxiliary one-dimensional problems, as well as in calculating the direction of gradients. Also we describe the situation when it is possible to neglect or reduce the time spent on solving auxiliary one-dimensional problems. For some examples, experiments have demonstrated that the method can work effectively on some classes of non-smooth functions. In this case, an example of a simple non-smooth function is constructed, for which, if the subgradient is chosen incorrectly, even if the auxiliary one-dimensional problem is exactly solved, the convergence property of the method may not hold. Experiments have shown that the method under consideration can achieve the desired accuracy of solving the problem in less time than the other methods (gradient descent and ellipsoid method) considered. Partially, it is noted that with an increase in the accuracy of the desired solution, the operating time for the Yu. E. Nesterov’s method can grow slower than the time of the ellipsoid method.

    Views (last year): 34.
  9. Бабаков А.В.
    Моделирование нестационарной структуры потока около спускаемого аппарата в условиях марсианской атмосферы
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 701-714

    В статье представлены результаты численного моделирования вихревого пространственного нестационарного движения среды, возникающего около боковой и донной поверхностей десантного модуля при его спуске в атмосфере Марса. Численное исследование проведено для высокоскоростного режима обтекания при различных углах атаки. Математическое моделирование осуществлено на основе модели Навье – Стокса и модели равновесных химических реакций для газового состава марсианской атмосферы. Результаты моделирования показали, что при рассматриваемых условиях движения спускаемого аппарата около его боковой и донной поверхностей реализуется нестационарное течение, имеющее ярко выраженный вихревой характер. Численные расчеты указывают на то, что в зависимости от угла атаки нестационарность и вихревой характер потока могут проявляться как на всей боковой и донной поверхностях аппарата, так и, частично, на их подветренной стороне. Для различных углов атаки приводятся картины вихревой структуры потока около поверхности спускаемого аппарата и в его ближнем следе, а также картины полей температуры и показателя адиабаты. Нестационарный характер обтекания подтверждается представленными временными зависимостями газодинамических параметров потока в различных точках поверхности аппарата. Проведенные параметрические расчеты позволили построить зависимости аэродинамических характеристик спускаемого аппарата от угла атаки. Математическое моделирование осуществляется на основе являющегося методом конечных объемов консервативного численного метода потоков, основанного на конечно-разностной записи законов сохранения аддитивных характеристик среды с использованием upwind-аппроксимаций потоковых переменных. Для моделирования возникающей при обтекании сложной вихревой структуры потока около спускаемого аппарата используются неравномерные вычислительные сетки, включающие до 30 миллионов конечных объемов с экспоненциальным сгущением к поверхности, что позволило выявить мелкомасштабные вихревые образования. Численные исследования проведены на базе разработанного комплекса программ, основанного на параллельных алгоритмах используемого численного метода и реализованного на современных многопроцессорных вычислительных системах. Приведенные в статье результаты численного моделирования получены при использовании до двух тысяч вычислительных ядер многопроцессорного комплекса.

    Babakov A.V.
    Simulation of unsteady structure of flow over descent module in the Martian atmosphere conditions
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 701-714

    The article presents the results of numerical modeling of the vortex spatial non-stationary motion of the medium arising near the lateral and bottom surfaces of the descent module during its movement in the atmosphere of Mars. The numerical study was performed for the high-speed streamline regime at various angles of attack. Mathematical modeling was carried out on the basis of the Navier – Stokes model and the model of equilibrium chemical reactions for the Martian atmosphere gas. The simulation results showed that under the considered conditions of the descent module motion, a non-stationary flow with a pronounced vortex character is realized near its lateral and bottom surfaces. Numerical calculations indicate that, depending on the angle of attack, the nonstationarity and vortex nature of the flow can manifest itself both on the entire lateral and bottom surfaces of the module, and, partially, on their leeward side. For various angles of attack, pictures of the vortex structure of the flow near the surface of the descent vehicle and in its near wake are presented, as well as pictures of the gas-dynamic parameters fields. The non-stationary nature of the flow is confirmed by the presented time dependences of the gas-dynamic parameters of the flow at various points on the module surface. The carried out parametric calculations made it possible to determine the dependence of the aerodynamic characteristics of the descent module on the angle of attack. Mathematical modeling is carried out on the basis of the conservative numerical method of fluxes, which is a finitevolume method based on a finite-difference writing of the conservation laws of additive characteristics of the medium using «upwind» approximations of stream variables. To simulate the complex vortex structure of the flow over descent module, the nonuniform computational grids are used, including up to 30 million finite volumes with exponential thickening to the surface, which made it possible to reveal small-scale vortex formations. Numerical investigations were carried out on the basis of the developed software package based on parallel algorithms of the used numerical method and implemented on modern multiprocessor computer systems. The results of numerical simulation presented in the article were obtained using up to two thousand computing cores of a multiprocessor complex.

  10. Худхур Х.М., Халил И.Х.
    Удаление шума из изображений с использованием предлагаемого алгоритма трехчленного сопряженного градиента
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 841-853

    Алгоритмы сопряженных градиентов представляют собой важный класс алгоритмов безусловной оптимизации с хорошей локальной и глобальной сходимостью и скромными требованиями к памяти. Они занимают промежуточное место между методом наискорейшего спуска и методом Ньютона, поскольку требуют вычисленияи хранения только первых производных и как правило быстрее методов наискорейшего спуска. В данном исследовании рассмотрен новый подход в задаче восстановления изображений. Он наследует одновременно методу сопряженных градиентов Флетчера – Ривза (FR) и трехкомпонентному методу сопряженных градиентов (TTCG), и поэтому назван авторами гибридным трехкомпонентным методом сопряженных градиентов (HYCGM). Новое направление спуска в нем учитывает текущее направления градиента, предыдущее направления спуска и градиент из предыдущей итерации. Показано, что новый алгоритм обладает свойствами глобальной сходимости и монотонности при использовании неточного линейного поиска типа Вулфа при некоторых стандартных предположениях. Для подтверждения эффективности предложенного алгоритма приводятся результаты численных экспериментов предложенного метода в сравнении с классическим методом Флетчера – Ривза (FR) и трехкомпонентным методом Флетчера – Ривза (TTFR).

    Khudhur H.M., Halil I.H.
    Noise removal from images using the proposed three-term conjugate gradient algorithm
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 841-853

    Conjugate gradient algorithms represent an important class of unconstrained optimization algorithms with strong local and global convergence properties and simple memory requirements. These algorithms have advantages that place them between the steep regression method and Newton’s algorithm because they require calculating the first derivatives only and do not require calculating and storing the second derivatives that Newton’s algorithm needs. They are also faster than the steep descent algorithm, meaning that they have overcome the slow convergence of this algorithm, and it does not need to calculate the Hessian matrix or any of its approximations, so it is widely used in optimization applications. This study proposes a novel method for image restoration by fusing the convex combination method with the hybrid (CG) method to create a hybrid three-term (CG) algorithm. Combining the features of both the Fletcher and Revees (FR) conjugate parameter and the hybrid Fletcher and Revees (FR), we get the search direction conjugate parameter. The search direction is the result of concatenating the gradient direction, the previous search direction, and the gradient from the previous iteration. We have shown that the new algorithm possesses the properties of global convergence and descent when using an inexact search line, relying on the standard Wolfe conditions, and using some assumptions. To guarantee the effectiveness of the suggested algorithm and processing image restoration problems. The numerical results of the new algorithm show high efficiency and accuracy in image restoration and speed of convergence when used in image restoration problems compared to Fletcher and Revees (FR) and three-term Fletcher and Revees (TTFR).

Pages: previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"