Результаты поиска по 'статистическая модель':
Найдено статей: 92
  1. Шумов В.В.
    Модели борьбы с силовыми актами в морском пространстве
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 907-920

    Моделирование борьбы с террористическими, пиратскими и разбойными актами на море является актуальной научной задачей в силу распространенности силовых актов и недостаточного количества работ по данной проблематике. Действия пиратов и террористов разнообразны. С использованием судна-базы они могут нападать на суда на удалении до 450–500 миль от побережья. Выбрав цель, они ее преследуют и с применением оружия идут на абордаж. Действия по освобождению судна, захваченного пиратами или террористами, включают: блокирование судна, прогноз мест возможного нахождения пи- ратов на судне, проникновение (с борта на борт, по воздуху или из-под воды) и зачистка помещений судна. Анализ специальной литературы по действиям пиратов и террористов показал, что силовой акт (и действия по его нейтрализации) состоит из двух этапов: во-первых, это блокирование судна, заключающееся в принуждении к его остановке, и, во-вторых, нейтрализация команды (группы террористов, пиратов), включая проникновение на судно (корабль) и его зачистку. Этапам цикла поставлены в соответствие показатели — вероятность блокирования и вероятность нейтрализации. Переменными модели силового акта являются количество судов (кораблей, катеров) у нападающих и обороняющихся, а также численность группы захвата нападающих и экипажа судна — жертвы атаки. Параметры модели (показатели корабельного и боевого превосходства) оценены методом максимального правдоподобия с использованием международной базы по инцидентам на море. Значения названных параметров равны 7.6–8.5. Столь высокие значения параметров превосходства отражают возможности сторон по действиям в силовых актах. Предложен и статистически обоснован аналитический метод расчета параметров превосходства. В модели учитываются следующие показатели: возможности сторон по обнаружению противника, скоростные и маневренные характеристики судов, высота судна и характеристики средств абордажа, характеристики оружия и средств защиты и др. С использованием модели Г. Беккера и теории дискретного выбора оценена вероятность отказа от силового акта. Значимость полученных моделей для борьбы с силовыми актами в морском пространстве заключается в возможности количественного обоснования мер по защите судна от пиратских и террористических атак и мер сдерживания, направленных на предотвращение атак (наличие на борту судна вооруженной охраны, помощь военных кораблей и вертолетов).

    Shumov V.V.
    Mathematical models of combat and military operations
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 907-920

    Modeling the fight against terrorist, pirate and robbery acts at sea is an urgent scientific task due to the prevalence of force acts and the insufficient number of works on this issue. The actions of pirates and terrorists are diverse. Using a base ship, they can attack ships up to 450–500 miles from the coast. Having chosen the target, they pursue it and use the weapons to board the ship. Actions to free a ship captured by pirates or terrorists include: blocking the ship, predicting where pirates might be on the ship, penetrating (from board to board, by air or from under water) and cleaning up the ship’s premises. An analysis of the special literature on the actions of pirates and terrorists showed that the act of force (and actions to neutralize it) consists of two stages: firstly, blocking the vessel, which consists in forcing it to stop, and secondly, neutralizing the team (terrorist groups, pirates), including penetration of a ship (ship) and its cleaning. The stages of the cycle are matched by indicators — the probability of blocking and the probability of neutralization. The variables of the act of force model are the number of ships (ships, boats) of the attackers and defenders, as well as the strength of the capture group of the attackers and the crew of the ship - the victim of the attack. Model parameters (indicators of naval and combat superiority) were estimated using the maximum likelihood method using an international database of incidents at sea. The values of these parameters are 7.6–8.5. Such high values of superiority parameters reflect the parties' ability to act in force acts. An analytical method for calculating excellence parameters is proposed and statistically substantiated. The following indicators are taken into account in the model: the ability of the parties to detect the enemy, the speed and maneuverability characteristics of the vessels, the height of the vessel and the characteristics of the boarding equipment, the characteristics of weapons and protective equipment, etc. Using the Becker model and the theory of discrete choice, the probability of failure of the force act is estimated. The significance of the obtained models for combating acts of force in the sea space lies in the possibility of quantitative substantiation of measures to protect the ship from pirate and terrorist attacks and deterrence measures aimed at preventing attacks (the presence of armed guards on board the ship, assistance from warships and helicopters).

  2. Малков С.Ю., Давыдова О.И.
    Модернизация как глобальный процесс: опыт математического моделирования
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 859-873

    В статье проведен анализ эмпирических данных по долгосрочной демографической и экономической динамике стран мира за период с начала XIX века по настоящее время. В качестве показателей, характеризующих долгосрочную демографическую и экономическую динамику стран мира, были выбраны данные по численности населения и ВВП ряда стран мира за период 1500–2016 годов. Страны выбирались таким образом, чтобы в их число вошли представители с различным уровнем развития (развитые и развивающиеся страны), а также страны из различных регионов мира (Северная Америка, Южная Америка, Европа, Азия, Африка). Для моделирования и обработки данных использована специально разработанная математическая модель. Представленная модель является автономной системой дифференциальных уравнений, которая описывает процессы социально-экономической модернизации, в том числе процесс перехода от аграрного общества к индустриальному и постиндустриальному. В модель заложена идея о том, что процесс модернизации начинается с возникновения в традиционном обществе инновационного сектора, развивающегося на основе новых технологий. Население из традиционного сектора постепенно перемещается в инновационный сектор. Модернизация завершается, когда большая часть населения переходит в инновационный сектор.

    При работе с моделью использовались статистические методы обработки данных, методы Big Data, включая иерархическую кластеризацию. С помощью разработанного алгоритма на базе метода случайного спуска были идентифицированы параметры модели и проведена ее верификация на основе эмпирических рядов, а также проведено тестирование модели с использованием статистических данных, отражающих изменения, наблюдаемые в развитых и развивающихся странах в период происходящей в течение последних столетий модернизации. Тестирование модели продемонстрировало ее высокое качество — отклонения расчетных кривых от статистических данных, как правило, небольшие и происходят в периоды войн и экономических кризисов. Проведенный анализ статистических данных по долгосрочной демографической и экономической динамике стран мира позволил определить общие закономерности и формализовать их в виде математической модели. Модель будет использоваться с целью прогноза демографической и экономической динамики в различных странах мира.

    Malkov S.Yu., Davydova O.I.
    Modernization as a global process: the experience of mathematical modeling
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 859-873

    The article analyzes empirical data on the long-term demographic and economic dynamics of the countries of the world for the period from the beginning of the 19th century to the present. Population and GDP of a number of countries of the world for the period 1500–2016 were selected as indicators characterizing the long-term demographic and economic dynamics of the countries of the world. Countries were chosen in such a way that they included representatives with different levels of development (developed and developing countries), as well as countries from different regions of the world (North America, South America, Europe, Asia, Africa). A specially developed mathematical model was used for modeling and data processing. The presented model is an autonomous system of differential equations that describes the processes of socio-economic modernization, including the process of transition from an agrarian society to an industrial and post-industrial one. The model contains the idea that the process of modernization begins with the emergence of an innovative sector in a traditional society, developing on the basis of new technologies. The population is gradually moving from the traditional sector to the innovation sector. Modernization is completed when most of the population moves to the innovation sector.

    Statistical methods of data processing and Big Data methods, including hierarchical clustering were used. Using the developed algorithm based on the random descent method, the parameters of the model were identified and verified on the basis of empirical series, and the model was tested using statistical data reflecting the changes observed in developed and developing countries during the period of modernization taking place over the past centuries. Testing the model has demonstrated its high quality — the deviations of the calculated curves from statistical data are usually small and occur during periods of wars and economic crises. Thus, the analysis of statistical data on the long-term demographic and economic dynamics of the countries of the world made it possible to determine general patterns and formalize them in the form of a mathematical model. The model will be used to forecast demographic and economic dynamics in different countries of the world.

  3. Решитько М.А., Усов А.Б., Угольницкий Г.А.
    Модель управления потреблением воды в регионах с малой водообеспеченностью
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1395-1410

    В статье рассматривается проблема рационального использования водных ресурсов на уровне региона. Приводится обзор существующих методов контроля качества и количества водных ресурсов на различных уровнях — от отдельных домохозяйств до мирового. В самой работе проблема рассматривается для регионов России с малой водообеспеченностью — количеством воды на человека в год. Особое внимание уделяется регионам, в которых данный показатель мал из-за природных особенностей региона, а не большого числа жителей. В таких регионах много ресурсов выделяется на различную водную инфраструктуру, в том числе водохранилища, переброску воды из соседних регионов. При этом основными потребителями воды являются промышленность и сельское хозяйство. В работе представлена динамическая двухуровневая модель, сопоставляющая потребление регионом воды и объем производства в регионе (валовый региональный продукт, ВРП). На верхнем уровне модели находится администрация региона (центр), назначающая плату за использование воды, а на нижнем — предприятия региона (агенты). Проведены аналитическое исследование и идентификация модели. Аналитическое исследование позволяет с помощью принципа максимума Понтрягина найти оптимальные управления агентов. Идентификация модели позволяет, используя статистические данные для региона, определить коэффициенты модели таким образом, чтобы она соответствовала данному региону. Для идентификации модели используются данные Росстата. Далее следует численное исследование модели для конкретных регионов с использованием алгоритма trust region reflective.

    Для ряда регионов РФ с низким уровнем водообеспеченности приведены результаты идентификации модели на основе данных Росстата, а также возможные значения ВРП и потребления воды в зависимости от выбранной стратегии центра. Для многих регионов расчеты показывают возможность существенного (>20%) сокращения потребления воды при некотором сокращении производства (≈10%).

    Приведенная в работе модель позволяет рассчитывать размер дополнительной платы за использование воды для достижения оптимального соотношения экономических и экологических последствий.

    Reshitko M.A., Usov A.B., Ougolnitsky G.A.
    Water consumption control model for regions with low water availability
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1395-1410

    This paper considers the problem of water consumption in the regions of Russia with low water availability. We provide a review of the existing methods to control quality and quantity of water resources at different scales — from households to worldwide. The paper itself considers regions with low “water availability” parameter which is amount of water per person per year. Special attention is paid to the regions, where this parameter is low because of natural features of the region, not because of high population. In such regions many resources are spend on water processing infrastructure to store water and transport water from other regions. In such regions the main water consumers are industry and agriculture.

    We propose dynamic two-level hierarchical model which matches water consumption of a region with its gross regional product. On the top level there is a regional administration (supervisor) and on the lower level there are region enterprises (agents). The supervisor sets fees for water consumption. We study the model with Pontryagin’s maximum principle and provide agents’s optimal control in analytical form. For the supervisor’s control we provide numerical algorithm. The model has six free coefficients, which can be chosen so the model represents a particular region. We use data from Russia Federal State Statistics Service for identification process of a model. For numerical analysis we use trust region reflective algorithms. We provide calculations for a few regions with low water availability. It is shown that it is possible to reduce water consumption of a region more than by 20% while gross regional product drop is less than 10%.

  4. Никитюк А.С.
    Идентификация параметров вязкоупругих моделей клетки на основе силовых кривых и вейвлет-преобразования
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1653-1672

    Механические свойства клеток эукариот играют важную роль в условиях жизненного цикла и при развитии патологических процессов. В работе обсуждается проблема идентификации и верификации параметров вязкоупругих конститутивных моделей на основе данных силовой спектроскопии клеток эукариот. Предлагается использовать одномерное непрерывное вейвлет-преобразование для расчета ядра релаксации. Приводятся аналитические выкладки и результаты численных расчетов, позволяющие на основе экспериментально установленных силовых кривых и теоретических зависимостей «напряжение – деформация» с применением алгоритмов вейвлет-дифференцирования получать аналогичные друг другу функции релаксации. Анализируются тестовые примеры, демонстрирующие корректности программной реализации предложенных алгоритмов. Рассматриваются модели клетки, на примере которых демонстрируется применение предложенной процедуры идентификации и верификации их параметров. Среди них структурно-механическая модель с параллельно соединенными дробными элементами, которая является на данный момент наиболее адекватной с точки зрения соответствия данным атомно-силовой микроскопии широкого класса клеток, и новая статистико-термодинамическая модель, которая не уступает в описательных возможностях моделям с дробными производными, но имеет более ясный физический смысл. Для статистико-термодинамической модели подробно описывается процедура ее построения, которая в себя включает следующее: введение структурной переменной, параметра порядка, для описания ориентационных свойств цитоскелета клетки; постановку и решение статистической задачи для ансамбля актиновых филаментов представительного объема клетки относительно данной переменной; установление вида свободной энергии, зависящей от параметра порядка, температуры и внешней нагрузки. Также предложено в качестве модели представительного элемента клетки использовать ориентационно-вязкоупругое тело. Согласно теории линейной термодинамики получены эволюционные уравнения, описывающие механическое поведение представительного объема клетки, которые удовлетворяют основным термодинамическим законам. Также поставлена и решена задача оптимизации параметров статистико-термодинамической модели клетки, которая может сопоставляется как с экспериментальными данными, так и с результатами симуляций на основе других математических моделей. Определены вязкоупругие характеристики клеток на основе сопоставления с литературными данными.

    Nikitiuk A.S.
    Parameter identification of viscoelastic cell models based on force curves and wavelet transform
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1653-1672

    Mechanical properties of eukaryotic cells play an important role in life cycle conditions and in the development of pathological processes. In this paper we discuss the problem of parameters identification and verification of viscoelastic constitutive models based on force spectroscopy data of living cells. It is proposed to use one-dimensional continuous wavelet transform to calculate the relaxation function. Analytical calculations and the results of numerical simulation are given, which allow to obtain relaxation functions similar to each other on the basis of experimentally determined force curves and theoretical stress-strain relationships using wavelet differentiation algorithms. Test examples demonstrating correctness of software implementation of the proposed algorithms are analyzed. The cell models are considered, on the example of which the application of the proposed procedure of identification and verification of their parameters is demonstrated. Among them are a structural-mechanical model with parallel connected fractional elements, which is currently the most adequate in terms of compliance with atomic force microscopy data of a wide class of cells, and a new statistical-thermodynamic model, which is not inferior in descriptive capabilities to models with fractional derivatives, but has a clearer physical meaning. For the statistical-thermodynamic model, the procedure of its construction is described in detail, which includes the following. Introduction of a structural variable, the order parameter, to describe the orientation properties of the cell cytoskeleton. Setting and solving the statistical problem for the ensemble of actin filaments of a representative cell volume with respect to this variable. Establishment of the type of free energy depending on the order parameter, temperature and external load. It is also proposed to use an oriented-viscous-elastic body as a model of a representative element of the cell. Following the theory of linear thermodynamics, evolutionary equations describing the mechanical behavior of the representative volume of the cell are obtained, which satisfy the basic thermodynamic laws. The problem of optimizing the parameters of the statisticalthermodynamic model of the cell, which can be compared both with experimental data and with the results of simulations based on other mathematical models, is also posed and solved. The viscoelastic characteristics of cells are determined on the basis of comparison with literature data.

  5. Дроботенко М.И., Невечеря А.П.
    Прогнозирование динамики трудовых ресурсов на многоотраслевом рынке труда
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 235-250

    Рассмотрена задача прогнозирования количества занятых и безработных многоотраслевого рынка труда на основе балансовой математической модели межотраслевых перемещений трудовых ресурсов.

    Балансовая математическая модель позволяет вычислять значения показателей межотраслевых перемещений с помощью только статистических данных по отраслевой занятости и безработице, предоставляемых Федеральной службой государственной статистики. Вычисленные за несколько лет подряд показатели межотраслевых перемещений трудовых ресурсов используются для построения трендов каждого из этих показателей. С помощью найденных трендов осуществляется прогнозирование показателей межотраслевых перемещений трудовых ресурсов, на основе результатов которого проводится прогнозирование отраслевой занятости и безработицы исследуемого многоотраслевого рынка труда.

    Предложенный подход применен для прогнозирования занятых специалистов в отраслях народного хозяйства Российской Федерации в 2011–2016 гг. Для описания тенденций показателей, определяющих межотраслевые перемещения трудовых ресурсов, использовались следующие виды трендов: линейный, нелинейный, константный. Порядок выбора трендов наглядно продемонстрирован на примере показателей, определяющих перемещения трудовых ресурсов из отрасли «Транспорт и связь» в отрасль «Здравоохранение и предоставление социальных услуг», а также из отрасли «Государственное управление и обеспечение военной безопасности, социальное обеспечение» в отрасль «Образование».

    Произведено сравнение нескольких подходов к прогнозированию: наивный прогноз, в рамках которого прогнозирование показателей рынка труда осуществлялось только на основе константного тренда; прогнозирование на основе балансовой модели с использованием только константного тренда для всех показателей, определяющих межотраслевые перемещения трудовых ресурсов; прогноз непосредственно по количеству занятых в отраслях экономики с помощью рассматриваемых в работе видов трендов; прогнозирование на основе балансовой модели с выбором тренда для каждого показателя, определяющего межотраслевые перемещения трудовых ресурсов. Показано, что использование балансовой модели обеспечивает лучшее качество прогноза по сравнению с прогнозированиемне посредственно по количеству занятых. Учет трендов показателей межотраслевых перемещений улучшает качество прогноза.

    Также в статье приведены примеры анализа состояния многоотраслевого рынка труда Российской Федерации. С помощью балансовой модели были получены такие сведения, как распределение исходящих из конкретных отраслей потоков трудовых ресурсов по отраслямэк ономики, отраслевая структура входящих в конкретные отрасли потоков трудовых ресурсов. Эти сведения не содержаться непосредственно в данных, предоставляемых Федеральной службой государственной статистики.

    Drobotenko M.I., Nevecherya A.P.
    Forecasting the labor force dynamics in a multisectoral labor market
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 235-250

    The article considers the problem of forecasting the number of employed and unemployed persons in a multisectoral labor market using a balance mathematical model of labor force intersectoral dynamics.

    The balance mathematical model makes it possible to calculate the values of intersectoral dynamics indicators using only statistical data on sectoral employment and unemployment provided by the Federal State Statistics Service. Intersectoral dynamics indicators of labor force calculated for several years in a row are used to build trends for each of these indicators. The found trends are used to calculation of forecasted intersectoral dynamics indicators of labor force. The sectoral employment and unemployment of researched multisectoral labor market is forecasted based on values these forecasted indicators.

    The proposed approach was applied to forecast the employed persons in the economic sectors of the Russian Federation in 2011–2016. The following types of trends were used to describe changes of intersectoral dynamics indicators values: linear, non-linear, constant. The procedure for selecting trends is clearly demonstrated by the example of indicators that determine the labor force movements from the “Transport and communications” sector to the “Healthcare and social services” sector, as well as from the “Public administration and military security, social security” sector to the “Education” sector.

    Several approaches to forecasting was compared: a) naive forecast, within which the labor market indicators was forecasted only using a constant trend; b) forecasting based on a balance model using only a constant trend for all intersectoral dynamics indicators of labor force; c) forecasting directly by the number employed persons in economic sectors using the types of trends considered in the article; d) forecasting based on a balance model with the trends choice for each intersectoral dynamics indicators of labor force.

    The article shows that the use of a balance model provides a better forecast quality compared to forecasting directly by the number of employed persons. The use of trends in intersectoral dynamics indicators improves the quality of the forecast. The article also provides analysis examples of the multisectoral labor market in the Russian Federation. Using the balance model, the following information was obtained: the labor force flows distribution outgoing from concrete sectors by sectors of the economy; the sectoral structure of the labor force flows ingoing in concrete sectors. This information is not directly contained in the data provided by the Federal State Statistics Service.

  6. Ильясов Д.В., Молчанов А.Г., Глаголев М.В., Суворов Г.Г., Сирин А.А.
    Моделирование нетто-экосистемного обмена диоксида углерода сенокоса на осушенной торфяной почве: анализ сценариев использования
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1427-1449

    Нетто-экосистемный обмен (NEE) — ключевой компонент углеродного баланса, характеризующий экосистему как источник или сток углерода. В работе интерпретируются данные натурных измерений NEE и составляющих его компонентов (дыхания почвы — Rsoil, экосистемы — Reco и валового газообмена — GEE) сенокоса и залежи методами математического моделирования. Измерения проводились в ходе пяти полевых кампаний 2018 и 2019 гг. на осушенной части Дубненского болотного массива в Талдомском районе Московской области. После осушения для добычи торфа остаточная торфяная залежь (1–1.5 м) была распахана и впоследствии залужена под сенокосы. Измерение потоков CO2 проводили с помощью динамических камер: при ненарушенной растительности измеряли NEE и Reco, а при ее удалении — Rsoil. Для моделирования потоков CO2 была использована их связь с температурой почвы и воздуха, уровнем почвенно-грунтовых вод, фотосинтетически активной радиацией, подземной и надземной фитомассой растений. Параметризация моделей проведена с учетом устойчивости коэффициентов, оцененной методом статистического моделирования (бутстрэпа). Проведены численные эксперименты по оценке влияния различных режимов использования сенокоса на NEE. Установлено, что общий за сезон (с 15 мая по 30 сентября) NEE значимо не отличался на сенокосе без кошения (К0) и залежи, составив соответственно 4.5±1.0 и 6.2±1.4 тС·га–1·сезон–1. Таким образом, оба объекта являются источником диоксида углерода в атмосферу. Однократное в сезон кошение сенокоса (К1) приводит к росту NEE до 6.5±0.9, а двукратное (К2) — до 7.5±1.4 тС·га–1·сезон–1. Как при К1, так и при К2 потери углерода незначительно увели- чиваются в сравнении с К0 и оказываются близкими в сравнении с залежью. При этом накопленный растениями углерод частично переводится при кошении в сельскохозяйственную продукцию (величина скошенной фитомассы для К1 и К2 составляет 0.8±0.1 и 1.4±0.1 тС·га–1·сезон–1), в то время как на залежи его значительная часть возвращается в атмосферу при отмирании и последующем разложении растений.

    Ilyasov D.V., Molchanov A.G., Glagolev M.V., Suvorov G.G., Sirin A.A.
    Modelling of carbon dioxide net ecosystem exchange of hayfield on drained peat soil: land use scenario analysis
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1427-1449

    The data of episodic field measurements of carbon dioxide balance components (soil respiration — Rsoil, ecosystem respiration — Reco, net ecosystem exchange — NEE) of hayfields under use and abandoned one are interpreted by modelling. The field measurements were carried within five field campaigns in 2018 and 2019 on the drained part of the Dubna Peatland in Taldom District, Moscow Oblast, Russia. The territory is within humid continental climate zone. Peatland drainage was done out for milled peat extraction. After extraction was stopped, the residual peat deposit (1–1.5 m) was ploughed and grassed (Poa pratensis L.) for hay production. The current ground water level (GWL) varies from 0.3–0.5 m below the surface during wet and up to 1.0 m during dry periods. Daily dynamics of CO2 fluxes was measured using dynamic chamber method in 2018 (August) and 2019 (May, June, August) for abandoned ditch spacing only with sanitary mowing once in 5 years and the ditch spacing with annual mowing. NEE and Reco were measured on the sites with original vegetation, and Rsoil — after vegetation removal. To model a seasonal dynamics of NEE, the dependence of its components (Reco, Rsoil, and Gross ecosystematmosphere exchange of carbon dioxide — GEE) from soil and air temperature, GWL, photosynthetically active radiation, underground and aboveground plant biomass were used. The parametrization of the models has been carried out considering the stability of coefficients estimated by the bootstrap method. R2 (α = 0.05) between simulated and measured Reco was 0.44 (p < 0.0003) on abandoned and 0.59 (p < 0.04) on under use hayfield, and GEE was 0.57 (p < 0.0002) and 0.77 (p < 0.00001), respectively. Numerical experiments were carried out to assess the influence of different haymaking regime on NEE. It was found that NEE for the season (May 15 – September 30) did not differ much between the hayfield without mowing (4.5±1.0 tC·ha–1·season–1) and the abandoned one (6.2±1.4). Single mowing during the season leads to increase of NEE up to 6.5±0.9, and double mowing — up to 7.5±1.4 tC·ha–1·season–1. This means increase of carbon losses and CO2 emission into the atmosphere. Carbon loss on hayfield for both single and double mowing scenario was comparable with abandoned hayfield. The value of removed phytomass for single and double mowing was 0.8±0.1 tC·ha–1·season–1 and 1.4±0.1 (45% carbon content in dry phytomass) or 3.0 and 4.4 t·ha–1·season–1 of hay (17% moisture content). In comparison with the fallow, the removal of biomass of 0.8±0.1 at single and 1.4±0.1 tC·ha–1·season–1 double mowing is accompanied by an increase in carbon loss due to CO2 emissions, i.e., the growth of NEE by 0.3±0.1 and 1.3±0.6 tC·ha–1·season–1, respectively. This corresponds to the growth of NEE for each ton of withdrawn phytomass per hectare of 0.4±0.2 tС·ha–1·season–1 at single mowing, and 0.9±0.7 tС·ha–1·season–1 at double mowing. Therefore, single mowing is more justified in terms of carbon loss than double mowing. Extensive mowing does not increase CO2 emissions into the atmosphere and allows, in addition, to “replace” part of the carbon loss by agricultural production.

  7. Хавинсон М.Ю., Лосев А.С., Кулаков М.П.
    Моделирование численности занятого, безработного и экономически неактивного населения Дальнего Востока России
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 251-264

    Исследования кризисной социально-демографической ситуации на Дальнем Востоке требуют не только применения традиционных статистических методов, но и концептуального анализа возможных сценариев развития, основанного на принципах синергетики. Статья посвящена моделированию численности занятого, безработного и экономически неактивного населения Дальнего Востока на основе нелинейных дифференциальных уравнений с постоянными коэффициентами. Рассмотрена базовая нелинейная математическая модель, основанная на принципе парных взаимодействий и являющаяся частным случаем модели борьбы условных информаций по Д.С. Чернавскому. Методом наименьших квадратов, адаптированным для данной модели, найдены точечные оценки параметров, характеризующих динамику численностей занятых, безработных и экономически неактивного населения Дальнего Востока России за 2000–2017 гг. Средняя ошибка аппроксимации составила не более 5.17 %. Полученная точечная оценка параметров в асимптотическом случае соответствует неустойчивому фокусу (расходящимся колебаниям оцениваемых показателей численности), что свидетельствует, в аспекте проведенного моделирования, о постепенном увеличении диспропорций между рассматриваемыми группами населения и обвале их динамики в инерционном сценарии. Обнаружено, что в окрестности инерционного сценария формируется нерегулярная хаотическая динамика, что усложняет возможность эффективного управления. Установлено, что изменение лишь одного параметра в модели (в частности, миграционного) при отсутствии структурных социально-экономических сдвигов может лишь отсрочить обвал динамики в долгосрочной перспективе либо привести к появлению сложно предсказуемых режимов (хаоса). Найдены другие оценки параметров модели, соответствующие устойчивой динамике (устойчивому фокусу), которая неплохо согласуется с реальной динамикой численности рассматриваемых групп населения. Согласно исследованной математической модели бифуркационными являются параметры, характеризующие темпы оттока трудоспособного населения, рождаемость (омоложение населения), а также темп миграционного притока безработных. Показано, что переход к устойчивому сценарию возможен при одновременном воздействии на несколько этих параметров, что требует сложного комплекса мероприятий по закреплению населения Дальнего Востока России и роста уровня их доходов, в пересчете на компенсацию инфраструктурной разреженности. Для разработки конкретных мер в рамках государственной политики необходимы дальнейшие экономические и социологические исследования.

    Khavinson M.J., Losev A.S., Kulakov M.P.
    Modeling the number of employed, unemployed and economically inactive population in the Russian Far East
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 251-264

    Studies of the crisis socio-demographic situation in the Russian Far East require not only the use of traditional statistical methods, but also a conceptual analysis of possible development scenarios based on the synergy principles. The article is devoted to the analysis and modeling of the number of employed, unemployed and economically inactive population using nonlinear autonomous differential equations. We studied a basic mathematical model that takes into account the principle of pair interactions, which is a special case of the model for the struggle between conditional information of D. S. Chernavsky. The point estimates for the parameters are found using least squares method adapted for this model. The average approximation error was no more than 5.17%. The calculated parameter values correspond to the unstable focus and the oscillations with increasing amplitude of population number in the asymptotic case, which indicates a gradual increase in disparities between the employed, unemployed and economically inactive population and a collapse of their dynamics. We found that in the parametric space, not far from the inertial scenario, there are domains of blow-up and chaotic regimes complicating the ability to effectively manage. The numerical study showed that a change in only one model parameter (e.g. migration) without complex structural socio-economic changes can only delay the collapse of the dynamics in the long term or leads to the emergence of unpredictable chaotic regimes. We found an additional set of the model parameters corresponding to sustainable dynamics (stable focus) which approximates well the time series of the considered population groups. In the mathematical model, the bifurcation parameters are the outflow rate of the able-bodied population, the fertility (“rejuvenation of the population”), as well as the migration inflow rate of the unemployed. We found that the transition to stable regimes is possible with the simultaneous impact on several parameters which requires a comprehensive set of measures to consolidate the population in the Russian Far East and increase the level of income in terms of compensation for infrastructure sparseness. Further economic and sociological research is required to develop specific state policy measures.

  8. Моисеев Н.А., Назарова Д.И., Семина Н.С., Максимов Д.А.
    Обнаружение точек разворота на финансовых данных с помощью методов глубокого машинного обучения
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 555-575

    Цель настоящего исследования заключается в разработке методологии выявления точек разворота на временных рядах, включая в том числе финансовые данные. Теоретической основой исследования послужили работы, посвященные анализу структурных изменений на финансовых рынках, описанию предложенных алгоритмов обнаружения точек разворота и особенностям построения моделей классического и глубокого машинного обучения для решения данного типа задач. Разработка подобного инструментария представляет интерес для инвесторов и других заинтересованных сторон, предоставляя дополнительные подходы к эффективному анализу финансовых рынков и интерпретации доступных данных.

    Для решения поставленной задачи была обучена нейронная сеть. В ходе исследования было рассмотрено несколько способов формирования тренировочных выборок, которые различаются характером статистических параметров. Для повышения качества обучения и получения более точных результатов была разработана методология формирования признаков, служащих входными данными для нейронной сети. В свою очередь, эти признаки формируются на основе анализа математического ожидания и стандартного отклонения временных рядов на некоторых интервалах. Также исследуется возможностьих комбинации для достижения более стабильных результатов.

    Результаты модельных экспериментов анализируются с целью сравнения эффективности предложенной модели с другими существующими алгоритмами обнаружения точек разворота, получившими широкое применение в решении практических задач. В качестве тренировочных и тестовых данных используется специально созданный датасет, генерация которого осуществляется с использованием собственных методов. Кроме того, обученная на различных признаках модельте стируется на дневных данных индекса S&P 500 в целях проверки ее эффективности в реальном финансовом контексте.

    По мере описания принципов работы модели рассматриваются возможности для дальнейшего ее усовершенствования: модернизации структуры предложенного механизма, генерации тренировочных данных и формирования признаков. Кроме того, перед авторами стоит задача развития существующих концепций определения точек изменения в режиме реального времени.

    Moiseev N.A., Nazarova D.I., Semina N.S., Maksimov D.A.
    Changepoint detection on financial data using deep learning approach
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 555-575

    The purpose of this study is to develop a methodology for change points detection in time series, including financial data. The theoretical basis of the study is based on the pieces of research devoted to the analysis of structural changes in financial markets, description of the proposed algorithms for detecting change points and peculiarities of building classical and deep machine learning models for solving this type of problems. The development of such tools is of interest to investors and other stakeholders, providing them with additional approaches to the effective analysis of financial markets and interpretation of available data.

    To address the research objective, a neural network was trained. In the course of the study several ways of training sample formation were considered, differing in the nature of statistical parameters. In order to improve the quality of training and obtain more accurate results, a methodology for feature generation was developed for the formation of features that serve as input data for the neural network. These features, in turn, were derived from an analysis of mathematical expectations and standard deviations of time series data over specific intervals. The potential for combining these features to achieve more stable results is also under investigation.

    The results of model experiments were analyzed to compare the effectiveness of the proposed model with other existing changepoint detection algorithms that have gained widespread usage in practical applications. A specially generated dataset, developed using proprietary methods, was utilized as both training and testing data. Furthermore, the model, trained on various features, was tested on daily data from the S&P 500 index to assess its effectiveness in a real financial context.

    As the principles of the model’s operation are described, possibilities for its further improvement are considered, including the modernization of the proposed model’s structure, optimization of training data generation, and feature formation. Additionally, the authors are tasked with advancing existing concepts for real-time changepoint detection.

  9. Горбачев О.Г.
    Вероятностно-статистическая модель страхового капитала
    Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 231-235

    Обоснована необходимость введения в научный оборот новой экономической категории – страховой капитал. Показано, что страховая деятельность порождает специальную разновидность капитала (как фактора производства) – гарантийный фонд, который назван автором «основной денежный страховой капитал». Установлено, что наряду с общепринятыми свойствами капитала как фактора производства страховой капитал обладает рядом специфических свойств, обусловленных его вероятностно-статистической природой. На основе вероятностно-статистической модели исследована роль страхового капитала в формировании цены на страховую услугу. В частности, показано, что закон убывающей отдачи для страхового капитала не носит универсального характера.

    Gorbachev O.G.
    Probabilistic-statistical model of insurance capital
    Computer Research and Modeling, 2012, v. 4, no. 1, pp. 231-235

    The article reveals the necessity of introduction of new economic category such as “insurance capital”. Insurance activity generates a specific kind of capital (as a production factor) – the guarantee fund, which is called “primary insurance monetary capital". The article establishes that, due to its probabilistic and statistical nature, the insurance capital has a number of specific features in addition to conventional characteristics of capital as a production factor. Basing on probabilistic-statistical model author investigates the role of insurance capital in the formation of price for insurance services. In particular, the author exposes that the law of diminishing returns is not universal when talking about insurance capital.

    Views (last year): 1. Citations: 2 (RSCI).
  10. В статье обсуждается проблема влияния целей исследования на структуру многофакторной модели регрессионного анализа (в частности, на реализацию процедуры снижения размерности модели). Демонстрируется, как приведение спецификации модели множественной регрессии в соответствие целям исследования отражается на выборе методов моделирования. Сравниваются две схемы построения модели: первая не позволяет учесть типологию первичных предикторов и характер их влияния на результативные признаки, вторая схема подразумевает этап предварительного разбиения исходных предикторов на группы (в соответствии с целями исследования). На примере решения задачи анализа причин выгорания творческих работников показана важность этапа качественного анализа и систематизации априори отобранных факторов, который реализуется не вычислительными средствами, а за счет привлечения знаний и опыта специалистов в изучаемой предметной области.

    Представленный пример реализации подхода к определению спецификации регрессионной модели сочетает формализованные математико-статистические процедуры и предшествующий им этап классификации первичных факторов. Наличие указанного этапа позволяет объяснить схему управляющих (корректирующих) воздействий (смягчение стиля руководства и усиление одобрения приводят к снижению проявлений тревожности и стресса, что, в свою очередь, снижает степень выраженности эмоционального истощения участников коллектива). Предварительная классификация также позволяет избежать комбинирования в одной главной компоненте управляемых и неуправляемых, регулирующих и управляемых признаков-факторов, которое могло бы ухудшить интерпретируемость синтезированных предикторов.

    На примере конкретной задачи показано, что отбор факторов-регрессоров — это процесс, требующий индивидуального решения. В рассмотренном случае были последовательно использованы: систематизация признаков, корреляционный анализ, метод главных компонент, регрессионный анализ. Первые три метода позволили существенно сократить размерность задачи, что не повлияло на достижение цели, для которой эта задача была поставлена: были показаны существенные меры управляющего воздействия на коллектив, позволяющие снизить степень эмоционального выгорания его участников.

    The article discusses the problem of the influence of the research goals on the structure of the multivariate model of regression analysis (in particular, on the implementation of the procedure for reducing the dimension of the model). It is shown how bringing the specification of the multiple regression model in line with the research objectives affects the choice of modeling methods. Two schemes for constructing a model are compared: the first does not allow taking into account the typology of primary predictors and the nature of their influence on the performance characteristics, the second scheme implies a stage of preliminary division of the initial predictors into groups, in accordance with the objectives of the study. Using the example of solving the problem of analyzing the causes of burnout of creative workers, the importance of the stage of qualitative analysis and systematization of a priori selected factors is shown, which is implemented not by computing means, but by attracting the knowledge and experience of specialists in the studied subject area. The presented example of the implementation of the approach to determining the specification of the regression model combines formalized mathematical and statistical procedures and the preceding stage of the classification of primary factors. The presence of this stage makes it possible to explain the scheme of managing (corrective) actions (softening the leadership style and increasing approval lead to a decrease in the manifestations of anxiety and stress, which, in turn, reduces the severity of the emotional exhaustion of the team members). Preclassification also allows avoiding the combination in one main component of controlled and uncontrolled, regulatory and controlled feature factors, which could worsen the interpretability of the synthesized predictors. On the example of a specific problem, it is shown that the selection of factors-regressors is a process that requires an individual solution. In the case under consideration, the following were consistently used: systematization of features, correlation analysis, principal component analysis, regression analysis. The first three methods made it possible to significantly reduce the dimension of the problem, which did not affect the achievement of the goal for which this task was posed: significant measures of controlling influence on the team were shown. allowing to reduce the degree of emotional burnout of its participants.

Pages: « first previous next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"