Результаты поиска по 'теоретико-игровая модель':
Найдено статей: 14
  1. Мальсагов М.Х., Угольницкий Г.А., Усов А.Б.
    Борьба с экономической коррупцией при распределении ресурсов
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 173-185

    В теоретико-игровой постановке рассмотрена модель борьбы с коррупцией при распределении ресурсов. Система распределения ресурсов включает в свой состав одного принципала (субъект управления верхнего уровня), одного или нескольких супервайзеров (субъектов среднего уровня) и нескольких агентов (субъекты нижнего уровня). Отношения между субъектами разных уровней строятся на основе иерархии: субъект верхнего уровня воздействует (управляет) на субъектов среднего уровня, а те, в свою очередь, на субъектов нижнего уровня. Предполагается, что коррупции подвержен средний уровень управления. Агенты предлагают супервайзеру взятки, в обмен на которые он предоставляет им дополнительные доли ресурса. Предположим также, что принципал не подвержен коррупции и является бескорыстным, не преследующим частных целей. Исследование модели проведено с точки зрения как супервайзера, так и агентов. C точки зрения агентов, возникает некооперативная игра, в которой находится равновесие Нэша. При этом задачи оптимального управления для частного вида входных функций решаются аналитически с помощью принципа максимума Понтрягина. C точки зрения супервайзера, возникает игра, которая ведется в соответствии с регламентом игры Гермейера Г2t. Указан алгоритм построения равновесия. Стратегия наказания находится аналитически. Стратегия поощрения в случае входных функций общего вида находится численно. Строится дискретный аналог непрерывной модели. Предполагается, что все субъекты управления могут изменять свои стратегии поведения в одни и те же моменты времени конечное число раз. В результате от задачи максимизации своего целевого функционала супервайзер переходит к задаче максимизации целевой функции многих переменных. Для нахождения ее наибольшего значения используется метод качественно репрезентативных сценариев. Идея этого метода состоит в том, что из множества потенциально возможных сценариев управления выбираются только сценарии, позволяющие представить качественно различные пути развития системы. В результате мощность этого множества не слишком велика и удается осуществить полный перебор качественно репрезентативных сценариев и найти стратегию поощрения агентов. После ее нахождения супервайзер предлагает агентам механизм управления с обратной связью по управлению, состоящий в наказании агентов при отклонении от выбранной супервайзером стратегии и поощрении в противном случае.

    Malsagov M.X., Ougolnitsky G.A., Usov A.B.
    Struggle against economic corruption in resource allocation
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 173-185

    A dynamic game theoretic model of struggle against corruption in resource allocation is considered. It is supposed that the system of resource allocation includes one principal, one or several supervisors, and several agents. The relations between them are hierarchical: the principal influences to the supervisors, and they in turn exert influence on the agents. It is assumed that the supervisor can be corrupted. The agents propose bribes to the supervisor who in exchange allocates additional resources to them. It is also supposed that the principal is not corrupted and does not have her own purposes. The model is investigated from the point of view of the supervisor and the agents. From the point of view of agents a non-cooperative game arises with a set of Nash equilibria as a solution. The set is found analytically on the base of Pontryagin maximum principle for the specific class of model functions. From the point of view of the supervisor a hierarchical Germeyer game of the type Г2t is built, and the respective algorithm of its solution is proposed. The punishment strategy is found analytically, and the reward strategy is built numerically on the base of a discrete analogue of the initial continuous- time model. It is supposed that all agents can change their strategies in the same time instants only a finite number of times. Thus, the supervisor can maximize his objective function of many variables instead of maximization of the objective functional. A method of qualitatively representative scenarios is used for the solution. The idea of this method consists in that it is possible to choose a very small number of scenarios among all potential ones that represent all qualitatively different trajectories of the system dynamics. These scenarios differ in principle while all other scenarios yield no essentially new results. Then a complete enumeration of the qualitatively representative scenarios becomes possible. After that, the supervisor reports to the agents the rewardpunishment control mechanism.

    Views (last year): 33. Citations: 1 (RSCI).
  2. Шумов В.В.
    Охрана биоресурсов в морском прибрежном пространстве: математическая модель
    Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 1109-1125

    Охрана водных биоресурсов в морском прибрежном пространстве имеет существенные особенности (большое количество маломерных промысловых судов, динамизм обстановки, использование береговых средств охраны), в силу чего выделяется в отдельный класс прикладных задач. Представлена математическая модель охраны, предназначенная для определения состава средств обнаружения нарушителей и средств реализации обстановки в интересах обеспечения функции сдерживания незаконной деятельности. Решена тактическая теоретико-игровая задача: найден оптимальный рубеж патрулирования (стоянки) средств реализации (катеров охраны) и оптимальное удаление мест промысла нарушителей от берега. С использованием методов теории планирования эксперимента получены линейные регрессионные модели, позволяющие оценить вклад основных факторов, влияющих на результаты моделирования.

    В интересах повышения устойчивости и адекватности модели предложено использовать механизм ранжирования средств охраны, основанный на границах и рангах Парето и позволяющий учесть принципы охраны и дополнительные характеристики средств охраны. Для учета изменчивости обстановки предложены несколько сценариев, по которым целесообразно выполнять расчеты.

    Shumov V.V.
    Protection of biological resources in the coastal area: the mathematical model
    Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1109-1125

    Protection of aquatic biological resources in the coastal area has significant features (a large number of small fishing vessels, the dynamism of the situation, the use of coastal protection), by virtue of which stands in a class of applications. A mathematical model of protection designed for the determination of detection equipment and means of violators of the situation in order to ensure the function of deterrence of illegal activities. Resolves a tactical game-theoretic problem - find the optimal line patrol (parking) means of implementation (guard boats) and optimal removal of seats from the shore fishing violators. Using the methods of the theory of experimental design, linear regression models to assess the contribution of the main factors affecting the results of the simulation.

    In order to enhance the sustainability and adequacy of the model is proposed to use the mechanism of rankings means of protection, based on the borders and the rank and Pareto allows to take into account the principles of protection and further means of protection. To account for the variability of the situation offered several scenarios in which it is advisable to perform calculations.

    Views (last year): 1. Citations: 1 (RSCI).
  3. Корепанов В.О., Чхартишвили А.Г., Шумов В.В.
    Теоретико-игровые и рефлексивные модели боевых действий
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 179-203

    Моделирование боевых действий является актуальной научной и практической задачей, направленной на предоставление командирам и штабам количественных оснований для принятия решений. Авторами предложена функция победы в боевых и военных действиях, основанная на функции конфликта Г. Таллока и учитывающая масштаб боевых (военных) действий. На достаточном объеме данных военной статистики выполнена оценка параметра масштаба и найдены его значения для тактического, оперативного и стратегического уровней. Исследованы теоретико-игровые модели «наступление-оборона», в которых стороны решают ближайшую и последующую задачи, имея построение войск в один или несколько эшелонов. На первом этапе моделирования находится решение ближайшей задачи — прорыв (удержание) пунктов обороны, на втором — решение последующей задачи — разгром противника в глубине обороны (контратака и восстановление обороны). Для тактического уровня с использованием равновесия Нэша найдены решения ближайшей задачи (распределение сил сторон по пунктам обороны) в антагонистической игре по трем критериям: а) прорыв слабейшего пункта; б) прорыв хотя бы одного пункта; в) средневзвешенная вероятность. Показано, что наступающей стороне целесообразно использовать критерий «прорыв хотя бы одного пункта», при котором, при прочих равных условиях, обеспечивается максимальная вероятность прорыва пунктов обороны. На втором этапе моделирования для частного случая (стороны при прорыве и удержании пунктов обороны руководствуются критерием прорыва слабейшего пункта) решена задача распределения сил и средств между тактическими задачами (эшелонами) по двум критериям: а) максимизация вероятности прорыва пункта обороны и вероятности разгрома противника в глубине обороны; б) максимизация минимального значения из названных вероятностей (критерий гарантированного результата). Важным аспектом боевых действий является информированность. Рассмотрены несколько примеров рефлексивных игр (игр, характеризующихся сложной взаимной информированностью) и осуществления информационного управления. Показано, при каких условиях информационное управление увеличивает выигрыш игрока, и найдено оптимальное информационное управление.

    Korepanov V.O., Chkhartishvili A.G., Shumov V.V.
    Game-theoretic and reflexive combat models
    Computer Research and Modeling, 2022, v. 14, no. 1, pp. 179-203

    Modeling combat operations is an urgent scientific and practical task aimed at providing commanders and staffs with quantitative grounds for making decisions. The authors proposed the function of victory in combat and military operations, based on the function of the conflict by G. Tullock and taking into account the scale of combat (military) operations. On a sufficient volume of military statistics, the scale parameter was assessed and its values were found for the tactical, operational and strategic levels. The game-theoretic models «offensive – defense», in which the sides solve the immediate and subsequent tasks, having the formation of troops in one or several echelons, have been investigated. At the first stage of modeling, the solution of the immediate task is found — the breakthrough (holding) of defense points, at the second — the solution of the subsequent task — the defeat of the enemy in the depth of the defense (counterattack and restoration of defense). For the tactical level, using the Nash equilibrium, solutions were found for the closest problem (distribution of the forces of the sides by points of defense) in an antagonistic game according to three criteria: a) breakthrough of the weakest point, b) breakthrough of at least one point, and c) weighted average probability. It is shown that it is advisable for the attacking side to use the criterion of «breaking through at least one point», in which, all other things being equal, the maximum probability of breaking through the points of defense is ensured. At the second stage of modeling for a particular case (the sides are guided by the criterion of breaking through the weakest point when breaking through and holding defense points), the problem of distributing forces and facilities between tactical tasks (echelons) was solved according to two criteria: a) maximizing the probability of breaking through the defense point and the probability of defeating the enemy in depth defense, b) maximizing the minimum value of the named probabilities (the criterion of the guaranteed result). Awareness is an important aspect of combat operations. Several examples of reflexive games (games characterized by complex mutual awareness) and information management are considered. It is shown under what conditions information control increases the player’s payoff, and the optimal information control is found.

  4. Шумов В.В., Корепанов В.О.
    Математические модели боевых и военных действий
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 217-242

    Моделирование боевых и военных действий является важнейшей научной и практической задачей, направленной на предоставление командованию количественных оснований для принятия решений. Первые модели боя были разработаны в годы первой мировой войны (М. Осипов, F. Lanchester), а в настоящее время они получили широкое распространение в связи с массовым внедрением средств автоматизации. Вместе с тем в моделях боя и войны не в полной мере учитывается моральный потенциал участников конфликта, что побуждает и мотивирует дальнейшее развитие моделей боя и войны. Рассмотрена вероятностная модель боя, в которой параметр боевого превосходства определен через параметр морального (отношение процентов выдерживаемых потерь сторон) и параметр технологического превосходства. Для оценки последнего учитываются: опыт командования (способность организовать согласованные действия), разведывательные, огневые и маневренные возможности сторон и возможности оперативного (боевого) обеспечения. Разработана теоретико-игровая модель «наступление–оборона», учитывающая действия первых и вторых эшелонов (резервов) сторон. Целевой функцией наступающих в модели является произведение вероятности прорыва первым эшелоном одного из пунктов обороны на вероятность отражения вторым эшелоном контратаки резерва обороняющихся. Решена частная задача управления прорывом пунктов обороны и найдено оптимальное распределение боевых единиц между эшелонами. Доля войск, выделяемая сторонами во второй эшелон (резерв), растет с увеличением значения агрегированного параметра боевого превосходства наступающих и уменьшается с увеличением значения параметра боевого превосходства при отражении контратаки. При планировании боя (сражения, операции) и распределении своих войск между эшелонами важно знать не точное количество войск противника, а свои и его возможности, а также степень подготовленности обороны, что не противоречит опыту ведения боевых действий. В зависимости от условий обстановки целью наступления может являться разгром противника, скорейший захват важного района в глубине обороны противника, минимизация своих потерь и т. д. Для масштабирования модели «наступление–оборона» по целям найдены зависимости потерь и темпа наступления от начального соотношения боевых потенциалов сторон. Выполнен учет влияния общественных издержек на ход и исход войн. Дано теоретическое объяснение проигрыша в военной кампании со слабым в технологическом отношении противником и при неясной для общества цели войны. Для учета влияния психологических операций и информационных войн на моральный потенциал индивидов использована модель социально-информационного влияния.

    Shumov V.V., Korepanov V.O.
    Mathematical models of combat and military operations
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 217-242

    Simulation of combat and military operations is the most important scientific and practical task aimed at providing the command of quantitative bases for decision-making. The first models of combat were developed during the First World War (M. Osipov, F. Lanchester), and now they are widely used in connection with the massive introduction of automation tools. At the same time, the models of combat and war do not fully take into account the moral potentials of the parties to the conflict, which motivates and motivates the further development of models of battle and war. A probabilistic model of combat is considered, in which the parameter of combat superiority is determined through the parameter of moral (the ratio of the percentages of the losses sustained by the parties) and the parameter of technological superiority. To assess the latter, the following is taken into account: command experience (ability to organize coordinated actions), reconnaissance, fire and maneuverability capabilities of the parties and operational (combat) support capabilities. A game-based offensive-defense model has been developed, taking into account the actions of the first and second echelons (reserves) of the parties. The target function of the attackers in the model is the product of the probability of a breakthrough by the first echelon of one of the defense points by the probability of the second echelon of the counterattack repelling the reserve of the defenders. Solved the private task of managing the breakthrough of defense points and found the optimal distribution of combat units between the trains. The share of troops allocated by the parties to the second echelon (reserve) increases with an increase in the value of the aggregate combat superiority parameter of those advancing and decreases with an increase in the value of the combat superiority parameter when repelling a counterattack. When planning a battle (battles, operations) and the distribution of its troops between echelons, it is important to know not the exact number of enemy troops, but their capabilities and capabilities, as well as the degree of preparedness of the defense, which does not contradict the experience of warfare. Depending on the conditions of the situation, the goal of an offensive may be to defeat the enemy, quickly capture an important area in the depth of the enemy’s defense, minimize their losses, etc. For scaling the offensive-defense model for targets, the dependencies of the losses and the onset rate on the initial ratio of the combat potentials of the parties were found. The influence of social costs on the course and outcome of wars is taken into account. A theoretical explanation is given of a loss in a military company with a technologically weak adversary and with a goal of war that is unclear to society. To account for the influence of psychological operations and information wars on the moral potential of individuals, a model of social and information influence was used.

Pages: previous

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"