All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Оценивание параметров моделей временных рядов с марковскими переключениями режимов
Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 903-918В работе рассматривается задача оценивания параметров временных рядов, описываемых регрессионными моделями с марковскими переключениями двух режимов в случайные моменты времени и независимыми гауссовскими шумами. Для решения предлагается вариант EM-алгоритма, основанный на итерационной процедуре, в ходе которой происходит чередование оценивания параметров регрессии при заданной последовательности переключений режимов и оценивания последовательности переключений при заданных параметрах моделей регрессии. В отличие от известных методов оценивания параметров регрессий с марковскими переключениями режимов, которые основаны на вычислении апостериорных вероятностей дискретных состояний последовательности переключений, в работе находятся оптимальные по критерию максимума апостериорной вероятности оценки процесса переключений. В результате предлагаемый алгоритм оказывается более простым и требует меньшее количество расчетов. Компьютерное моделирование позволяет выявить факторы, влияющие на точность оценивания. К таким факторам относятся число наблюдений, количество неизвестных параметров регрессии, степень их различия в разных режимах работы, а также величина отношения сигнала к шуму, которую в моделях регрессии можно связать с величиной коэффициента детерминации. Предложенный алгоритм применяется для задачи оценивания параметров в моделях регрессии для доходности индекса РТС в зависимости от доходностей индекса S&P 500 и акций «Газпрома» за период с 2013 года по 2018 год. Проводится сравнение оценок параметров, найденных с помощью предлагаемого алгоритма, с оценками, которые формируются с использованием эконометрического пакета EViews, и с оценками обычного метода наименьших квадратов без учета переключений режимов. Учет переключений позволяет получить более точное представление о структуре статистической зависимости исследуемых переменных. В моделях с переключениями рост отношения сигнала к шуму приводит к тому, что уменьшаются различия в оценках, вырабатываемых предлагаемым алгоритмом и с помощью программы EViews.
Ключевые слова: оценивание параметров, модели регрессии, модели с марковскими переключениями, функция правдоподобия, метод максимума правдоподобия, дисперсия шума, отношение сигнала к шуму.
Estimation of models parameters for time series with Markov switching regimes
Computer Research and Modeling, 2018, v. 10, no. 6, pp. 903-918Views (last year): 36.The paper considers the problem of estimating the parameters of time series described by regression models with Markov switching of two regimes at random instants of time with independent Gaussian noise. For the solution, we propose a variant of the EM algorithm based on the iterative procedure, during which an estimation of the regression parameters is performed for a given sequence of regime switching and an evaluation of the switching sequence for the given parameters of the regression models. In contrast to the well-known methods of estimating regression parameters in the models with Markov switching, which are based on the calculation of a posteriori probabilities of discrete states of the switching sequence, in the paper the estimates are calculated of the switching sequence, which are optimal by the criterion of the maximum of a posteriori probability. As a result, the proposed algorithm turns out to be simpler and requires less calculations. Computer modeling allows to reveal the factors influencing accuracy of estimation. Such factors include the number of observations, the number of unknown regression parameters, the degree of their difference in different modes of operation, and the signal-to-noise ratio which is associated with the coefficient of determination in regression models. The proposed algorithm is applied to the problem of estimating parameters in regression models for the rate of daily return of the RTS index, depending on the returns of the S&P 500 index and Gazprom shares for the period from 2013 to 2018. Comparison of the estimates of the parameters found using the proposed algorithm is carried out with the estimates that are formed using the EViews econometric package and with estimates of the ordinary least squares method without taking into account regimes switching. The account of regimes switching allows to receive more exact representation about structure of a statistical dependence of investigated variables. In switching models, the increase in the signal-to-noise ratio leads to the fact that the differences in the estimates produced by the proposed algorithm and using the EViews program are reduced.
-
Разработка и исследование жесткого алгоритма анализа публикаций в Twitter и их влияния на движение рынка криптовалют
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 157-170Посты в социальных сетях являются важным индикатором, отображающим положение активов на финансовом рынке. В статье описывается жесткое решение задачи классификации для определения влияния активности в социальных сетях на движение финансового рынка. Отбираются аккаунты авторитетных в сообществе крипто-трейдеров-инфлюенсеров. В качестве данных используются специальные пакеты сообщений, которые состоят из текстовых постов, взятых из Twitter. Приведены способы предобработки текста, заключающиеся в лемматизации Stanza и применении регулярных выражений, для очищения зашумленных текстов, особенностью которых является многочисленное употребление сленговых слов и сокращений. Решается задача бинарной классификации, где слово рассматривается как элемент вектора единицы данных. Для более точного описания криптовалютной активности ищутся наилучшие параметры разметки для обработки свечей Binance. Методы выявления признаков, необходимых для точного описания текстовых данных и последующего процесса установления зависимости, представлены в виде машинного обучения и статистического анализа. В качестве первого используется отбор признаков на основе критерия информативности, который применяется при разбиении решающего дерева на поддеревья. Такой подход реализован в модели случайного леса и актуален для задачи выбора значимых для «стрижки деревьев» признаков. Второй же основан на жестком составлении бинарного вектора в ходе грубой проверки наличия либо отсутствия слова в пакете и подсчете суммы элементов этого вектора. Затем принимается решение в зависимости от преодоления этой суммой порогового значения, базирующегося на уровне, предварительно подобранном с помощью анализа частотного распределения упоминаний слова. Алгоритм, используемый для решения проблемы, был назван бенчмарком и проанализирован в качестве инструмента. Подобные алгоритмы часто используются в автоматизированных торговых стратегиях. В процессе исследования также описаны наблюдения влияния часто встречающихся в тексте слов, которые используются в качестве базиса размерностью 2 и 3 при векторизации.
Ключевые слова: анализ текста, обработка естественного языка, активность в Twitter, ча- стотный анализ, отбор признаков, задача классификации, финансовые рынки, бенчмарк, случайный лес, решающие деревья.
Development of and research into a rigid algorithm for analyzing Twitter publications and its influence on the movements of the cryptocurrency market
Computer Research and Modeling, 2023, v. 15, no. 1, pp. 157-170Social media is a crucial indicator of the position of assets in the financial market. The paper describes the rigid solution for the classification problem to determine the influence of social media activity on financial market movements. Reputable crypto traders influencers are selected. Twitter posts packages are used as data. The methods of text, which are characterized by the numerous use of slang words and abbreviations, and preprocessing consist in lemmatization of Stanza and the use of regular expressions. A word is considered as an element of a vector of a data unit in the course of solving the problem of binary classification. The best markup parameters for processing Binance candles are searched for. Methods of feature selection, which is necessary for a precise description of text data and the subsequent process of establishing dependence, are represented by machine learning and statistical analysis. First, the feature selection is used based on the information criterion. This approach is implemented in a random forest model and is relevant for the task of feature selection for splitting nodes in a decision tree. The second one is based on the rigid compilation of a binary vector during a rough check of the presence or absence of a word in the package and counting the sum of the elements of this vector. Then a decision is made depending on the superiority of this sum over the threshold value that is predetermined previously by analyzing the frequency distribution of mentions of the word. The algorithm used to solve the problem was named benchmark and analyzed as a tool. Similar algorithms are often used in automated trading strategies. In the course of the study, observations of the influence of frequently occurring words, which are used as a basis of dimension 2 and 3 in vectorization, are described as well.
-
Математические модели боевых и военных действий
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 217-242Моделирование боевых и военных действий является важнейшей научной и практической задачей, направленной на предоставление командованию количественных оснований для принятия решений. Первые модели боя были разработаны в годы первой мировой войны (М. Осипов, F. Lanchester), а в настоящее время они получили широкое распространение в связи с массовым внедрением средств автоматизации. Вместе с тем в моделях боя и войны не в полной мере учитывается моральный потенциал участников конфликта, что побуждает и мотивирует дальнейшее развитие моделей боя и войны. Рассмотрена вероятностная модель боя, в которой параметр боевого превосходства определен через параметр морального (отношение процентов выдерживаемых потерь сторон) и параметр технологического превосходства. Для оценки последнего учитываются: опыт командования (способность организовать согласованные действия), разведывательные, огневые и маневренные возможности сторон и возможности оперативного (боевого) обеспечения. Разработана теоретико-игровая модель «наступление–оборона», учитывающая действия первых и вторых эшелонов (резервов) сторон. Целевой функцией наступающих в модели является произведение вероятности прорыва первым эшелоном одного из пунктов обороны на вероятность отражения вторым эшелоном контратаки резерва обороняющихся. Решена частная задача управления прорывом пунктов обороны и найдено оптимальное распределение боевых единиц между эшелонами. Доля войск, выделяемая сторонами во второй эшелон (резерв), растет с увеличением значения агрегированного параметра боевого превосходства наступающих и уменьшается с увеличением значения параметра боевого превосходства при отражении контратаки. При планировании боя (сражения, операции) и распределении своих войск между эшелонами важно знать не точное количество войск противника, а свои и его возможности, а также степень подготовленности обороны, что не противоречит опыту ведения боевых действий. В зависимости от условий обстановки целью наступления может являться разгром противника, скорейший захват важного района в глубине обороны противника, минимизация своих потерь и т. д. Для масштабирования модели «наступление–оборона» по целям найдены зависимости потерь и темпа наступления от начального соотношения боевых потенциалов сторон. Выполнен учет влияния общественных издержек на ход и исход войн. Дано теоретическое объяснение проигрыша в военной кампании со слабым в технологическом отношении противником и при неясной для общества цели войны. Для учета влияния психологических операций и информационных войн на моральный потенциал индивидов использована модель социально-информационного влияния.
Ключевые слова: математическая модель, бой, наступление, оборона, война, моральный фактор, уравнения Осипова–Ланчестера, вероятностная модель, теоретико-игровая модель.
Mathematical models of combat and military operations
Computer Research and Modeling, 2020, v. 12, no. 1, pp. 217-242Simulation of combat and military operations is the most important scientific and practical task aimed at providing the command of quantitative bases for decision-making. The first models of combat were developed during the First World War (M. Osipov, F. Lanchester), and now they are widely used in connection with the massive introduction of automation tools. At the same time, the models of combat and war do not fully take into account the moral potentials of the parties to the conflict, which motivates and motivates the further development of models of battle and war. A probabilistic model of combat is considered, in which the parameter of combat superiority is determined through the parameter of moral (the ratio of the percentages of the losses sustained by the parties) and the parameter of technological superiority. To assess the latter, the following is taken into account: command experience (ability to organize coordinated actions), reconnaissance, fire and maneuverability capabilities of the parties and operational (combat) support capabilities. A game-based offensive-defense model has been developed, taking into account the actions of the first and second echelons (reserves) of the parties. The target function of the attackers in the model is the product of the probability of a breakthrough by the first echelon of one of the defense points by the probability of the second echelon of the counterattack repelling the reserve of the defenders. Solved the private task of managing the breakthrough of defense points and found the optimal distribution of combat units between the trains. The share of troops allocated by the parties to the second echelon (reserve) increases with an increase in the value of the aggregate combat superiority parameter of those advancing and decreases with an increase in the value of the combat superiority parameter when repelling a counterattack. When planning a battle (battles, operations) and the distribution of its troops between echelons, it is important to know not the exact number of enemy troops, but their capabilities and capabilities, as well as the degree of preparedness of the defense, which does not contradict the experience of warfare. Depending on the conditions of the situation, the goal of an offensive may be to defeat the enemy, quickly capture an important area in the depth of the enemy’s defense, minimize their losses, etc. For scaling the offensive-defense model for targets, the dependencies of the losses and the onset rate on the initial ratio of the combat potentials of the parties were found. The influence of social costs on the course and outcome of wars is taken into account. A theoretical explanation is given of a loss in a military company with a technologically weak adversary and with a goal of war that is unclear to society. To account for the influence of psychological operations and information wars on the moral potential of individuals, a model of social and information influence was used.
-
Моделирование кинетики радиофармпрепаратов с изотопами йода в задачах ядерной медицины
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 883-905Радиофармацевтические препараты, меченные радиоизотопами йода, в настоящее время широко применяются в визуализирующих и невизуализирующих методах ядерной медицины. При оценке результатов радионуклидных исследований структурно-функционального состояния органов и тканей существенную роль приобретает параллельное моделирование кинетики радиофармпрепарата в организме. Сложность такого моделирования заключается в двух противоположных аспектах. С одной стороны, в чрезмерном упрощении анатомо-физиологических особенностей организма при разбиении его на компартменты, что может приводить к потере или искажению значимой для клинической диагностики информации, с другой — в излишнем учете всех возможных взаимосвязей функционирования органов и систем, что, наоборот, приведет к появлению избыточного количества абсолютно бесполезных для клинической интерпретации математических данных, либо модель становится вообще неразрешимой. В нашей работе вырабатывается единый подход к построению математических моделей кинетики радиофармпрепаратов с изотопами йода в организме человека при диагностических и терапевтических процедурах ядерной медицины. На основе данного подхода разработаны трех- и четырехкамерные фармакокинетические модели и созданы соответствующие им расчетные программы на языке программирования C++ для обработки и оценки результатов радионуклидной диагностики и терапии. Предложены различные способы идентификации модельных параметров на основе количественных данных радионуклидных исследований функционального состояния жизненно важных органов. Приведены и проанализированы результаты фармакокинетического моделирования при радионуклидной диагностике печени, почек и щитовидной железы с помощью йодсодержащих радиофармпрепаратов. С использованием клинико-диагностических данных определены индивидуальные фармакокинетические параметры транспорта разных радиофармпрепаратов в организме (транспортные константы, периоды полувыведения, максимальная активность в органе и время ее достижения). Показано, что фармакокинетические характеристики для каждого пациента являются сугубо индивидуальными и не могут быть описаны усредненными кинетическими параметрами. В рамках трех фармакокинетических моделей получены и проанализированы зависимости «активность – время» для разных органов и тканей, в том числе для тканей, в которых активность радиофармпрепарата невозможно или затруднительно измерить клиническими методами. Также обсуждаются особенности и результаты моделирования и дозиметрического планирования радиойодтерапии щитовидной железы. Показано, что значения поглощенных радиационных доз очень чувствительны к кинетическим параметрам камерной модели — транспортным константам. Поэтому при индивидуальном дозиметрическом планировании радиойодтерапии следует уделять особое внимание получению точных количественных данных ультразвукового исследования и радиометрии щитовидной железы и на их основе идентификации параметров моделирования. Работа основана на принципах и методах фармакокинетики. Для численного решения систем дифференциальных уравнений фармакокинетических моделей мы использовали методы Рунге–Кутты и метод Розенброка. Для нахождения минимума функции нескольких переменных при идентификации параметров моделирования использовался метод Хука–Дживса.
Ключевые слова: фармакокинетическое моделирование, радиофармпрепарат, йод, фармакокинетика, радионуклидная диагностика, радионуклидная терапия.
Modeling the kinetics of radiopharmaceuticals with iodine isotopes in nuclear medicine problems
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 883-905Radiopharmaceuticals with iodine radioisotopes are now widely used in imaging and non-imaging methods of nuclear medicine. When evaluating the results of radionuclide studies of the structural and functional state of organs and tissues, parallel modeling of the kinetics of radiopharmaceuticals in the body plays an important role. The complexity of such modeling lies in two opposite aspects. On the one hand, excessive simplification of the anatomical and physiological characteristics of the organism when splitting it to the compartments that may result in the loss or distortion of important clinical diagnosis information, on the other – excessive, taking into account all possible interdependencies of the functioning of the organs and systems that, on the contrary, will lead to excess amount of absolutely useless for clinical interpretation of the data or the mathematical model becomes even more intractable. Our work develops a unified approach to the construction of mathematical models of the kinetics of radiopharmaceuticals with iodine isotopes in the human body during diagnostic and therapeutic procedures of nuclear medicine. Based on this approach, three- and four-compartment pharmacokinetic models were developed and corresponding calculation programs were created in the C++ programming language for processing and evaluating the results of radionuclide diagnostics and therapy. Various methods for identifying model parameters based on quantitative data from radionuclide studies of the functional state of vital organs are proposed. The results of pharmacokinetic modeling for radionuclide diagnostics of the liver, kidney, and thyroid using iodine-containing radiopharmaceuticals are presented and analyzed. Using clinical and diagnostic data, individual pharmacokinetic parameters of transport of different radiopharmaceuticals in the body (transport constants, half-life periods, maximum activity in the organ and the time of its achievement) were determined. It is shown that the pharmacokinetic characteristics for each patient are strictly individual and cannot be described by averaged kinetic parameters. Within the framework of three pharmacokinetic models, “Activity–time” relationships were obtained and analyzed for different organs and tissues, including for tissues in which the activity of a radiopharmaceutical is impossible or difficult to measure by clinical methods. Also discussed are the features and the results of simulation and dosimetric planning of radioiodine therapy of the thyroid gland. It is shown that the values of absorbed radiation doses are very sensitive to the kinetic parameters of the compartment model. Therefore, special attention should be paid to obtaining accurate quantitative data from ultrasound and thyroid radiometry and identifying simulation parameters based on them. The work is based on the principles and methods of pharmacokinetics. For the numerical solution of systems of differential equations of the pharmacokinetic models we used Runge–Kutta methods and Rosenbrock method. The Hooke–Jeeves method was used to find the minimum of a function of several variables when identifying modeling parameters.
-
Разработка и исследование алгоритмов машинного обучения для решения задачи классификации в публикациях Twitter
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 185-195Посты в социальных сетях способны как предсказывать движение финансового рынка, так и в некоторых случаях даже определять его направление. Анализ постов в Twitter способствует прогнозированию цен на криптовалюту. Специфика рассматриваемого сообщества заключается в особенной лексике. Так, в постах используются сленговые выражения, аббревиатуры и сокращения, наличие которых затрудняет векторизацию текстовых данных, в следствие чего рассматриваются методы предобработки такие, как лемматизация Stanza и применение регулярных выражений. В этой статье описываются простейшие модели машинного обучения, которые могут работать, несмотря на такие проблемы, как нехватка данных и короткие сроки прогнозирования. Решается задача бинарной текстовой классификации, в условиях которой слово рассматривается как элемент бинарного вектора единицы данных. Базисные слова определяются на основе частотного анализа упоминаний того или иного слова. Разметка составляется на основе свечей Binance с варьируемыми параметрами для более точного описания тренда изменения цены. В работе вводятся метрики, отражающие распределение слов в зависимости от их принадлежности к положительному или отрицательному классам. Для решения задачи классификации использовались dense-модель с подобранными при помощи Keras Tuner параметрами, логистическая регрессия, классификатор случайного леса, наивный байесовский классификатор, способный работать с малочисленной выборкой, что весьма актуально для нашей задачи, и метод k-ближайших соседей. Было проведено сравнение построенных моделей на основе метрики точности предсказанных меток. В ходе исследования было выяснено, что наилучшим подходом является использование моделей, которые предсказывают ценовые движения одной монеты. Наши модели имеют дело с постами, содержащими упоминания проекта LUNA, которого на данный момент уже не существует. Данный подход к решению бинарной классификации текстовых данных широко применяется для предсказания цены актива, тренда ее движения, что часто используется в автоматизированной торговле.
Ключевые слова: криптовалюты, Twitter, машинное обучение, обработка естественного языка, векторизация, dense модель, логистическая регрессия, случайный лес, KNN, наивный байесовский классификатор.
Development of and research on machine learning algorithms for solving the classification problem in Twitter publications
Computer Research and Modeling, 2023, v. 15, no. 1, pp. 185-195Posts on social networks can both predict the movement of the financial market, and in some cases even determine its direction. The analysis of posts on Twitter contributes to the prediction of cryptocurrency prices. The specificity of the community is represented in a special vocabulary. Thus, slang expressions and abbreviations are used in posts, the presence of which makes it difficult to vectorize text data, as a result of which preprocessing methods such as Stanza lemmatization and the use of regular expressions are considered. This paper describes created simplest machine learning models, which may work despite such problems as lack of data and short prediction timeframe. A word is considered as an element of a binary vector of a data unit in the course of the problem of binary classification solving. Basic words are determined according to the frequency analysis of mentions of a word. The markup is based on Binance candlesticks with variable parameters for a more accurate description of the trend of price changes. The paper introduces metrics that reflect the distribution of words depending on their belonging to a positive or negative classes. To solve the classification problem, we used a dense model with parameters selected by Keras Tuner, logistic regression, a random forest classifier, a naive Bayesian classifier capable of working with a small sample, which is very important for our task, and the k-nearest neighbors method. The constructed models were compared based on the accuracy metric of the predicted labels. During the investigation we recognized that the best approach is to use models which predict price movements of a single coin. Our model deals with posts that mention LUNA project, which no longer exist. This approach to solving binary classification of text data is widely used to predict the price of an asset, the trend of its movement, which is often used in automated trading.
-
Адаптивные методы первого порядка для относительносильновыпуклых задач оптимизации
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 445-472Настоящая статья посвящена некоторым адаптивным методам первого порядка для оптимизационных задач с относительно сильно выпуклыми функционалами. Недавно возникшее в оптимизации понятие относительной сильной выпуклости существенно расширяет класс выпуклых задач посредством замены в определении евклидовой нормы расстоянием в более общем смысле (точнее — расхождением или дивергенцией Брегмана). Важная особенность рассматриваемых в настоящей работе классов задач — обобщение стандартных требований к уровню гладкости целевых функционалов. Точнее говоря, рассматриваются относительно гладкие и относительно липшицевые целевые функционалы. Это может позволить применять рассматриваемую методику для решения многих прикладных задач, среди которых можно выделить задачу о нахождении общей точки системы эллипсоидов, а также задачу бинарной классификации с помощью метода опорных векторов. Если целевой функционал минимизационной задачи выпуклый, то условие относительной сильной выпуклости можно получить посредством регуляризации. В предлагаемой работе впервые предложены адаптивные методы градиентного типа для задач оптимизации с относительно сильно выпуклыми и относительно липшицевыми функционалами. Далее, в статье предложены универсальные методы для относительно сильно выпуклых задач оптимизации. Указанная методика основана на введении искусственной неточности в оптимизационную модель. Это позволило обосновать применимость предложенных методов на классе относительно гладких, так и на классе относительно липшицевых функционалов. При этом показано, как можно реализовать одновременно адаптивную настройку на значения параметров, соответствующих как гладкости задачи, так и введенной в оптимизационную модель искусственной неточности. Более того, показана оптимальность оценок сложности с точностью до умножения на константу для рассмотренных в работе универсальных методов градиентного типа для обоих классов относительно сильно выпуклых задач. Также в статье для задач выпуклого программирования с относительно липшицевыми функционалами обоснована возможность использования специальной схемы рестартов алгоритма зеркального спуска и доказана оптимальная оценка сложности такого алгоритма. Также приводятся результаты некоторых вычислительных экспериментов для сравнения работы предложенных в статье методов и анализируется целесообразность их применения.
Ключевые слова: адаптивный метод, относительно сильно выпуклый функционал, относи- тельно гладкий функционал, относительно липшицев функционал, оптимальный метод, зеркаль- ный спуск.
Adaptive first-order methods for relatively strongly convex optimization problems
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 445-472The article is devoted to first-order adaptive methods for optimization problems with relatively strongly convex functionals. The concept of relatively strong convexity significantly extends the classical concept of convexity by replacing the Euclidean norm in the definition by the distance in a more general sense (more precisely, by Bregman’s divergence). An important feature of the considered classes of problems is the reduced requirements concerting the level of smoothness of objective functionals. More precisely, we consider relatively smooth and relatively Lipschitz-continuous objective functionals, which allows us to apply the proposed techniques for solving many applied problems, such as the intersection of the ellipsoids problem (IEP), the Support Vector Machine (SVM) for a binary classification problem, etc. If the objective functional is convex, the condition of relatively strong convexity can be satisfied using the problem regularization. In this work, we propose adaptive gradient-type methods for optimization problems with relatively strongly convex and relatively Lipschitzcontinuous functionals for the first time. Further, we propose universal methods for relatively strongly convex optimization problems. This technique is based on introducing an artificial inaccuracy into the optimization model, so the proposed methods can be applied both to the case of relatively smooth and relatively Lipschitz-continuous functionals. Additionally, we demonstrate the optimality of the proposed universal gradient-type methods up to the multiplication by a constant for both classes of relatively strongly convex problems. Also, we show how to apply the technique of restarts of the mirror descent algorithm to solve relatively Lipschitz-continuous optimization problems. Moreover, we prove the optimal estimate of the rate of convergence of such a technique. Also, we present the results of numerical experiments to compare the performance of the proposed methods.
-
Расчет скорости поперечной волны при ударе по предварительно нагруженным нитям
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 887-897В работе рассматривается задача о поперечном ударе по тонкой предварительно нагруженной нити. Общепринятая теория о поперечному даре по тонкой нити отталкивается от классических публикаций Рахматулина и Смита. На основании теории Рахматулина – Смита получены соотношения, широко используемые в инженерной практике. Однако существуют многочисленные данные о том, что экспериментальные результаты могут существенно отличаться от оценок, сделанных на базе этих соотношений. Краткий обзор факторов, которые вызывают отличия, приведен в тексте статьи.
Основное внимание в данной статье уделяется скорости поперечной волны, формирующейся при ударе, так как только ее можно непосредственно наблюдать и измерять с помощью высокоскоростной съемки или иных методов. Рассматривается влияние предварительного натяжения нити на скорость волны. Данный фактор важен, так как он неизбежно возникает в результатах натурных испытаний в силу того, что надежное закрепление и точное позиционирование нити на экспериментальной установке требует некоторого ее натяжения. В данной работе показано, что предварительная деформация нити существенно влияет на скорость поперечной волны, возникающей в ходе ударного взаимодействия.
Выполнены расчеты серии постановок для нитей Kevlar 29 и Spectra 1000. Для различных уровней начального натяжения получены скорости поперечных волн. Приведено прямое сравнение численных результатов и аналитических оценок с данными экспериментов. Для рассмотренных постановок скорость поперечной волны в свободной и в нагруженной нити отличалась практически в два раза. Таким образом, показано, что измерения, основанные на высокоскоростной съемке и анализе наблюдаемых поперечных волн, должны учитывать предварительную деформацию нити.
В работе предложена формула для быстрой оценки скорости поперечной волны в натянутых нитях. Данная формула получена из основных соотношений теории Рахматулина – Смита в предположении большой начальной деформации нити. На примере рассмотренных постановок для Kevlar 29 и Spectra 1000 показано, что полученная формула может давать существенно лучшие результаты, чем классическое приближение. Также показано, что прямой численный расчет дает результаты, которые оказываются значительно ближе к экспериментальным данным, чем любая из рассмотренных аналитических оценок.
Ключевые слова: тонкая нить, ударная нагрузка, предварительная нагрузка, скорость поперечной волны, численное решение, аналитическая оценка.
Calculation of transverse wave speed in preloaded fibres under an impact
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 887-897The paper considers the problem of transverse impact on a thin preloaded fiber. The commonly accepted theory of transverse impact on a thin fiber is based on the classical works of Rakhmatulin and Smith. The simple relations obtained from the Rakhmatulin – Smith theory are widely used in engineering practice. However, there are numerous evidences that experimental results may differ significantly from estimations based on these relations. A brief overview of the factors that cause the differences is given in this article.
This paper focuses on the shear wave velocity, as it is the only feature that can be directly observed and measured using high-speed cameras or similar methods. The influence of the fiber preload on the wave speed is considered. This factor is important, since it inevitably arises in the experimental results. The reliable fastening and precise positioning of the fiber during the experiments requires its preload. This work shows that the preload significantly affects the shear wave velocity in the impacted fiber.
Numerical calculations were performed for Kevlar 29 and Spectra 1000 yarns. Shear wave velocities are obtained for different levels of initial tension. A direct comparison of numerical results and analytical estimations with experimental data is presented. The speed of the transverse wave in free and preloaded fibers differed by a factor of two for the setup parameters considered. This fact demonstrates that measurements based on high-speed imaging and analysis of the observed shear waves should take into account the preload of the fibers.
This paper proposes a formula for a quick estimation of the shear wave velocity in preloaded fibers. The formula is obtained from the basic relations of the Rakhmatulin – Smith theory under the assumption of a large initial deformation of the fiber. The formula can give significantly better results than the classical approximation, this fact is demonstrated using the data for preloaded Kevlar 29 and Spectra 1000. The paper also shows that direct numerical calculation has better corresponding with the experimental data than any of the considered analytical estimations.
-
Численное моделирование течения жидкости в насосе для перекачки крови в программном комплексе FlowVision
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 1025-1038В программном комплексе FlowVision проведено численное моделирование течения жидкости в насосе для перекачки крови. Данная тестовая задача, предоставленная Центром устройств и радиологического здоровья Управления по санитарному надзору за качеством пищевых продуктов и медикаментов США, предусматривала рассмотрение течения жидкости в соответствии с несколькими расчетными режимами. При этом для каждого расчетного случая задавалось определенное значение расхода жидкости и скорости вращения ротора. Необходимые для расчетов данные в виде точной геометрии, условий потока и характеристик жидкости были предоставлены всем участникам исследования, использующим для моделирования различные программные комплексы. Во FlowVision численное моделирование проводилось для шести режимов с ньютоновской жидкостью и стандартной моделью турбулентности $k-\varepsilon$, дополнительно были проведены расчеты пятого режима с моделью турбулентности $k-\omega$ SST и с использованием реологической модели жидкости Каро. На первом этапе численного моделирования была исследована сходимость по сетке, на основании которой выбрана итоговая сетка с числом ячеек порядка 6 миллионов. В связи с большим количеством ячеек для ускорения исследования часть расчетов проводилась на кластере «Ломоносов-2». В результате численного моделирования были получены и проанализированы значения перепада давления между входом и выходом насоса, скорости между лопатками ротора и в области диффузора, а также проведена визуализация распределения скорости в определенных сечениях. Для всех расчетных режимов осуществлялось сравнение перепада давления, полученного численно, с экспериментальными данными, а для пятого расчетного режима также производилось сравнение с экспериментом по распределению скорости между лопатками ротора и в области диффузора. Анализ данных показал хорошее соответствие результатов расчетов во FlowVision с результатами эксперимента и численного моделирования в других программных комплексах. Полученные во FlowVision результаты решения теста от Управления по санитарному надзору за качеством пищевых продуктов и медикаментов США позволяют говорить о том, что данный программный комплекс может быть использован для решения широкого спектра задач гемодинамики.
Ключевые слова: насос для перекачки крови, программный комплекс FlowVision, гемодинамика, валидационные расчеты.
Numerical simulation of fluid flow in a blood pump in the FlowVision software package
Computer Research and Modeling, 2023, v. 15, no. 4, pp. 1025-1038A numerical simulation of fluid flow in a blood pump was performed using the FlowVision software package. This test problem, provided by the Center for Devices and Radiological Health of the US. Food and Drug Administration, involved considering fluid flow according to several design modes. At the same time for each case of calculation a certain value of liquid flow rate and rotor speed was set. Necessary data for calculations in the form of exact geometry, flow conditions and fluid characteristics were provided to all research participants, who used different software packages for modeling. Numerical simulations were performed in FlowVision for six calculation modes with the Newtonian fluid and standard $k-\varepsilon$ turbulence model, in addition, the fifth mode with the $k-\omega$ SST turbulence model and with the Caro rheological fluid model were performed. In the first stage of the numerical simulation, the convergence over the mesh was investigated, on the basis of which a final mesh with a number of cells of the order of 6 million was chosen. Due to the large number of cells, in order to accelerate the study, part of the calculations was performed on the Lomonosov-2 cluster. As a result of numerical simulation, we obtained and analyzed values of pressure difference between inlet and outlet of the pump, velocity between rotor blades and in the area of diffuser, and also, we carried out visualization of velocity distribution in certain cross-sections. For all design modes there was compared the pressure difference received numerically with the experimental data, and for the fifth calculation mode there was also compared with the experiment by speed distribution between rotor blades and in the area of diffuser. Data analysis has shown good correlation of calculation results in FlowVision with experimental results and numerical simulation in other software packages. The results obtained in FlowVision for solving the US FDA test suggest that FlowVision software package can be used for solving a wide range of hemodynamic problems.
-
Обнаружение точек разворота на финансовых данных с помощью методов глубокого машинного обучения
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 555-575Цель настоящего исследования заключается в разработке методологии выявления точек разворота на временных рядах, включая в том числе финансовые данные. Теоретической основой исследования послужили работы, посвященные анализу структурных изменений на финансовых рынках, описанию предложенных алгоритмов обнаружения точек разворота и особенностям построения моделей классического и глубокого машинного обучения для решения данного типа задач. Разработка подобного инструментария представляет интерес для инвесторов и других заинтересованных сторон, предоставляя дополнительные подходы к эффективному анализу финансовых рынков и интерпретации доступных данных.
Для решения поставленной задачи была обучена нейронная сеть. В ходе исследования было рассмотрено несколько способов формирования тренировочных выборок, которые различаются характером статистических параметров. Для повышения качества обучения и получения более точных результатов была разработана методология формирования признаков, служащих входными данными для нейронной сети. В свою очередь, эти признаки формируются на основе анализа математического ожидания и стандартного отклонения временных рядов на некоторых интервалах. Также исследуется возможностьих комбинации для достижения более стабильных результатов.
Результаты модельных экспериментов анализируются с целью сравнения эффективности предложенной модели с другими существующими алгоритмами обнаружения точек разворота, получившими широкое применение в решении практических задач. В качестве тренировочных и тестовых данных используется специально созданный датасет, генерация которого осуществляется с использованием собственных методов. Кроме того, обученная на различных признаках модельте стируется на дневных данных индекса S&P 500 в целях проверки ее эффективности в реальном финансовом контексте.
По мере описания принципов работы модели рассматриваются возможности для дальнейшего ее усовершенствования: модернизации структуры предложенного механизма, генерации тренировочных данных и формирования признаков. Кроме того, перед авторами стоит задача развития существующих концепций определения точек изменения в режиме реального времени.
Ключевые слова: точки разворота, временные ряды, финансовые рынки, машинное обучение, нейронные сети.
Changepoint detection on financial data using deep learning approach
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 555-575The purpose of this study is to develop a methodology for change points detection in time series, including financial data. The theoretical basis of the study is based on the pieces of research devoted to the analysis of structural changes in financial markets, description of the proposed algorithms for detecting change points and peculiarities of building classical and deep machine learning models for solving this type of problems. The development of such tools is of interest to investors and other stakeholders, providing them with additional approaches to the effective analysis of financial markets and interpretation of available data.
To address the research objective, a neural network was trained. In the course of the study several ways of training sample formation were considered, differing in the nature of statistical parameters. In order to improve the quality of training and obtain more accurate results, a methodology for feature generation was developed for the formation of features that serve as input data for the neural network. These features, in turn, were derived from an analysis of mathematical expectations and standard deviations of time series data over specific intervals. The potential for combining these features to achieve more stable results is also under investigation.
The results of model experiments were analyzed to compare the effectiveness of the proposed model with other existing changepoint detection algorithms that have gained widespread usage in practical applications. A specially generated dataset, developed using proprietary methods, was utilized as both training and testing data. Furthermore, the model, trained on various features, was tested on daily data from the S&P 500 index to assess its effectiveness in a real financial context.
As the principles of the model’s operation are described, possibilities for its further improvement are considered, including the modernization of the proposed model’s structure, optimization of training data generation, and feature formation. Additionally, the authors are tasked with advancing existing concepts for real-time changepoint detection.
-
Редуцированная модель фотосистемы II для оценки характеристик фотосинтетического аппарата по данным индукции флуоресценции
Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 943-958Рассматривается подход для анализа некоторых биологических систем большой размерности, для которых справедливы предположения о квазиравновесных стадиях. Подход позволяет редуцировать детальные модели большой размерности и получить упрощенные модели, имеющие аналитическое решение. Это дает возможность достаточно точно воспроизводить экспериментальные кривые. Рассматриваемый подход был применен к детальной модели первичных процессов фотосинтеза в реакционном центре фотосистемы II. Упрощенная модель фотосистемы II хорошо описывает экспериментальных кривые индукции флуоресценции для высших и низших растений, полученные при разных интенсивностях света. Выведенные соотношения между переменными и параметрами детальной и упрощенной моделей, позволили использовать полученные оценки параметров упрощенной модели для описания динамики различных состояний фотосистемы II детальной модели.
Reduced model of photosystem II and its use to evaluate the photosynthetic apparatus characteristics according to the fluorescence induction curves
Computer Research and Modeling, 2012, v. 4, no. 4, pp. 943-958Views (last year): 3. Citations: 2 (RSCI).The approach for the analysis of some large-scale biological systems, on the base of quasiequilibrium stages is proposed. The approach allows us to reduce the detailed large-scaled models and obtain the simplified model with an analytical solution. This makes it possible to reproduce the experimental curves with a good accuracy. This approach has been applied to a detailed model of the primary processes of photosynthesis in the reaction center of photosystem II. The resulting simplified model of photosystem II describes the experimental fluorescence induction curves for higher and lower plants, obtained under different light intensities. Derived relationships between variables and parameters of detailed and simplified models, allow us to use parameters of simplified model to describe the dynamics of various states of photosystem II detailed model.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"